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Chapter 6. Decision Trees

Decision trees are versatile machine learning algorithms that can perform both
classification and regression tasks, and even multioutput tasks. They are powerful
algorithms, capable of fitting complex datasets. For example, in Chapter 2 you trained a
DecisionTreeRegressor model on the California housing dataset, fitting it perfectly
(actually, overfitting it).

Decision trees are also the fundamental components of random forests (see Chapter 7),
which are among the most powerful machine learning algorithms available today.

In this chapter we will start by discussing how to train, visualize, and make predictions
with decision trees. Then we will go through the CART training algorithm used by
Scikit-Learn, and we will explore how to regularize trees and use them for regression
tasks. Finally, we will discuss some of the limitations of decision trees.

Training and Visualizing a Decision Tree

To understand decision trees, let’s build one and take a look at how it makes
predictions. The following code trains a DecisionTreeClassifier on the iris dataset
(see Chapter 4):

from import load_iris
from import DecisionTreeClassifier

iris = load_iris(as_frame=True)
X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values
y_1iris = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X_iris, y_1iris)

You can visualize the trained decision tree by first using the export_graphviz()
function to output a graph definition file called iris tree.dot:

from import export_graphviz

export_graphviz(
tree_clf,
out_file="irils_tree.dot",
feature_names=["petal length (cm)", "petal width (cm)"],
class_names=1iris.target_names,
rounded=True,



filled=True
)

Then you can use graphviz.Source.from_file() to load and display the file in a
Jupyter notebook:

from graphviz import Source

Source.from_file("iris_tree.dot")
Graphviz is an open source graph visualization software package. It also includes a dot
command-line tool to convert .dot files to a variety of formats, such as PDF or PNG.

Your first decision tree looks like Figure 6-1.
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Figure 6-1. Iris decision tree

Making Predictions

Let’s see how the tree represented in Figure 6-1 makes predictions. Suppose you find
an iris flower and you want to classify it based on its petals. You start at the root node
(depth 0, at the top): this node asks whether the flower’s petal length is smaller than
2.45 cm. If it is, then you move down to the root’s left child node (depth 1, left). In this



case, it is a leaf node (i.e., it does not have any child nodes), so it does not ask any
questions: simply look at the predicted class for that node, and the decision tree predicts
that your flower is an Iris setosa (class=setosa).

Now suppose you find another flower, and this time the petal length is greater than 2.45
cm. You again start at the root but now move down to its right child node (depth 1,
right). This is not a leaf node, it’s a split node, so it asks another question: is the petal
width smaller than 1.75 cm? If it is, then your flower is most likely an Iris versicolor
(depth 2, left). If not, it is likely an Iris virginica (depth 2, right). It’s really that simple.

NOTE

One of the many qualities of decision trees is that they require very little data preparation. In fact, they
don’t require feature scaling or centering at all.

A node’s samples attribute counts how many training instances it applies to. For
example, 100 training instances have a petal length greater than 2.45 cm (depth 1,
right), and of those 100, 54 have a petal width smaller than 1.75 cm (depth 2, left). A
node’s value attribute tells you how many training instances of each class this node
applies to: for example, the bottom-right node applies to 0 Iris setosa, 1 Iris versicolor,
and 45 Iris virginica. Finally, a node’s gini attribute measures its Gini impurity: a node
is “pure” (gini=0) if all training instances it applies to belong to the same class. For
example, since the depth-1 left node applies only to Iris sefosa training instances, it is
pure and its Gini impurity is 0. Equation 6-1 shows how the training algorithm
computes the Gini impurity G; of the i" node. The depth-2 left node has a Gini impurity
equal to 1 — (0/54)% — (49/54)? — (5/54)* = 0.168.

Equation 6-1. Gini impurity

Gi=1- Zpi,kz
=1

In this equation:
e G, is the Gini impurity of the i node.

* pix1s the ratio of class & instances among the training instances in the i node.



NOTE

Scikit-Learn uses the CART algorithm, which produces only binary trees, meaning trees where split
nodes always have exactly two children (i.e., questions only have yes/no answers). However, other
algorithms, such as ID3, can produce decision trees with nodes that have more than two children.

Figure 6-2 shows this decision tree’s decision boundaries. The thick vertical line
represents the decision boundary of the root node (depth 0): petal length = 2.45 cm.
Since the lefthand area is pure (only Iris setosa), it cannot be split any further.
However, the righthand area is impure, so the depth-1 right node splits it at petal width
= 1.75 cm (represented by the dashed line). Since max_depth was set to 2, the decision
tree stops right there. If you set max_depth to 3, then the two depth-2 nodes would each
add another decision boundary (represented by the two vertical dotted lines).
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Figure 6-2. Decision tree decision boundaries

TIP

The tree structure, including all the information shown in Figure 6-1, is available via the classifier’s
tree_ attribute. Type help (tree_clf. tree_ ) for details, and see the this chapter’s notebook for

an example.



MODEL INTERPRETATION: WHITE BOX VERSUS BLACK BOX

Decision trees are intuitive, and their decisions are easy to interpret. Such models
are often called white box models. In contrast, as you will see, random forests and
neural networks are generally considered black box models. They make great
predictions, and you can easily check the calculations that they performed to make
these predictions; nevertheless, it is usually hard to explain in simple terms why the
predictions were made. For example, if a neural network says that a particular
person appears in a picture, it is hard to know what contributed to this prediction:
Did the model recognize that person’s eyes? Their mouth? Their nose? Their shoes?
Or even the couch that they were sitting on? Conversely, decision trees provide
nice, simple classification rules that can even be applied manually if need be (e.g.,
for flower classification). The field of interpretable ML aims at creating ML
systems that can explain their decisions in a way humans can understand. This is
important in many domains—for example, to ensure the system does not make
unfair decisions.

Estimating Class Probabilities

A decision tree can also estimate the probability that an instance belongs to a particular
class k. First it traverses the tree to find the leaf node for this instance, and then it
returns the ratio of training instances of class & in this node. For example, suppose you
have found a flower whose petals are 5 cm long and 1.5 cm wide. The corresponding
leaf node is the depth-2 left node, so the decision tree outputs the following
probabilities: 0% for Iris setosa (0/54), 90.7% for Iris versicolor (49/54), and 9.3% for
Iris virginica (5/54). And if you ask it to predict the class, it outputs Iris versicolor
(class 1) because it has the highest probability. Let’s check this:

>>> tree_clf.predict_proba([[5, 1.5]]).round(3)

array([[6. , 0.907, 0.093]])
>>> tree_clf.predict([[5, 1.5]])
array([1])

Perfect! Notice that the estimated probabilities would be identical anywhere else in the

bottom-right rectangle of Figure 6-2—for example, if the petals were 6 cm long and 1.5
cm wide (even though it seems obvious that it would most likely be an Iris virginica in

this case).



The CART Training Algorithm

Scikit-Learn uses the Classification and Regression Tree (CART) algorithm to train
decision trees (also called “growing” trees). The algorithm works by first splitting the
training set into two subsets using a single feature & and a threshold #; (e.g., “petal
length <2.45 cm”). How does it choose & and #;? It searches for the pair (%, ¢;) that
produces the purest subsets, weighted by their size. Equation 6-2 gives the cost function
that the algorithm tries to minimize.

Equation 6-2. CART cost function for classification

Mieft mright

Gleft +

J(kv tk) - Gright

m
{G]eft /right measures the impurity of the left /right subset
where

Mieft/right 1S the number of instances in the left /right subset

Once the CART algorithm has successfully split the training set in two, it splits the
subsets using the same logic, then the sub-subsets, and so on, recursively. It stops
recursing once it reaches the maximum depth (defined by the max_depth
hyperparameter), or if it cannot find a split that will reduce impurity. A few other
hyperparameters (described in a moment) control additional stopping conditions:
min_samples_split, min_samples_leaf, min_weight_fraction_leaf, and
max_leaf_nodes.

WARNING

As you can see, the CART algorithm is a greedy algorithm: it greedily searches for an optimum split at
the top level, then repeats the process at each subsequent level. It does not check whether or not the split
will lead to the lowest possible impurity several levels down. A greedy algorithm often produces a
solution that’s reasonably good but not guaranteed to be optimal.

Unfortunately, finding the optimal tree is known to be an NP-complete problem.1 It requires O(exp(m))
time, making the problem intractable even for small training sets. This is why we must settle for a
“reasonably good” solution when training decision trees.

Computational Complexity

Making predictions requires traversing the decision tree from the root to a leaf.
Decision trees generally are approximately balanced, so traversing the decision tree
requires going through roughly O(log,(m)) nodes, where log,(m) is the binary
logarithm of m, equal to log(m) / log(2). Since each node only requires checking the
value of one feature, the overall prediction complexity is O(log,(m)), independent of



the number of features. So predictions are very fast, even when dealing with large
training sets.

The training algorithm compares all features (or less if max_features is set) on all
samples at each node. Comparing all features on all samples at each node results in a
training complexity of O(n x m log,(m)).

Gini Impurity or Entropy?

By default, the DecisionTreeClassifier class uses the Gini impurity measure, but
you can select the entropy impurity measure instead by setting the criterion
hyperparameter to "entropy". The concept of entropy originated in thermodynamics as
a measure of molecular disorder: entropy approaches zero when molecules are still and
well ordered. Entropy later spread to a wide variety of domains, including in Shannon’s
information theory, where it measures the average information content of a message, as
we saw in Chapter 4. Entropy is zero when all messages are identical. In machine
learning, entropy is frequently used as an impurity measure: a set’s entropy is zero
when it contains instances of only one class. Equation 6-3 shows the definition of the
entropy of the i node. For example, the depth-2 left node in Figure 6-1 has an entropy
equal to —(49/54) log, (49/54) — (5/54) log, (5/54) = 0.445.

Equation 6-3. Entropy

Hi == pijlog, (pir)
k=1

P k70

So, should you use Gini impurity or entropy? The truth is, most of the time it does not
make a big difference: they lead to similar trees. Gini impurity is slightly faster to
compute, so it is a good default. However, when they differ, Gini impurity tends to
isolate the most frequent class in its own branch of the tree, while entropy tends to
produce slightly more balanced trees.?

Regularization Hyperparameters

Decision trees make very few assumptions about the training data (as opposed to linear
models, which assume that the data is linear, for example). If left unconstrained, the
tree structure will adapt itself to the training data, fitting it very closely—indeed, most
likely overfitting it. Such a model is often called a nonparametric model, not because it
does not have any parameters (it often has a lot) but because the number of parameters



is not determined prior to training, so the model structure is free to stick closely to the
data. In contrast, a parametric model, such as a linear model, has a predetermined
number of parameters, so its degree of freedom is limited, reducing the risk of
overfitting (but increasing the risk of underfitting).

To avoid overfitting the training data, you need to restrict the decision tree’s freedom
during training. As you know by now, this is called regularization. The regularization
hyperparameters depend on the algorithm used, but generally you can at least restrict
the maximum depth of the decision tree. In Scikit-Learn, this is controlled by the
max_depth hyperparameter. The default value is None, which means unlimited.
Reducing max_depth will regularize the model and thus reduce the risk of overfitting.

The DecisionTreeClassifier class has a few other parameters that similarly restrict
the shape of the decision tree:

max_features

Maximum number of features that are evaluated for splitting at each node

max_leaf nodes

Maximum number of leaf nodes

min_samples_split

Minimum number of samples a node must have before it can be split

min_samples_leaf

Minimum number of samples a leaf node must have to be created

min_weight_fraction_leaf

Same as min_samples_leaf but expressed as a fraction of the total number of
weighted instances

Increasing min_* hyperparameters or reducing max_* hyperparameters will regularize
the model.



NOTE

Other algorithms work by first training the decision tree without restrictions, then pruning (deleting)
unnecessary nodes. A node whose children are all leaf nodes is considered unnecessary if the purity
improvement it provides is not statistically significant. Standard statistical tests, such as the y? test (chi-
squared test), are used to estimate the probability that the improvement is purely the result of chance
(which is called the null hypothesis). If this probability, called the p-value, is higher than a given
threshold (typically 5%, controlled by a hyperparameter), then the node is considered unnecessary and
its children are deleted. The pruning continues until all unnecessary nodes have been pruned.

Let’s test regularization on the moons dataset, introduced in Chapter 5. We’ll train one
decision tree without regularization, and another with min_samples_leaf=5. Here’s
the code; Figure 6-3 shows the decision boundaries of each tree:

from sklearn.datasets import make_moons
X_moons, y_moons = make_moons(n_samples=150, noise=0.2, random_state=42)

tree_clf1l = DecisionTreeClassifier(random_state=42)

tree_clf2 = DecisionTreeClassifier(min_samples_leaf=5, random_state=42)
tree_clf1.fit(X_moons, y_moons)

tree_clf2.fit(X_moons, y_moons)
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Figure 6-3. Decision boundaries of an unregularized tree (left) and a regularized tree (right)

The unregularized model on the left is clearly overfitting, and the regularized model on
the right will probably generalize better. We can verify this by evaluating both trees on
a test set generated using a different random seed:

>>> X_moons_test, y_moons_test = make_moons(n_samples=1000, noise=0.2,
cee random_state=43)

>>> tree_clfl.score(X_moons_test, y_moons_test)

0.898

>>> tree_clf2.score(X_moons_test, y_moons_test)

0.92



Indeed, the second tree has a better accuracy on the test set.

Regression

Decision trees are also capable of performing regression tasks. Let’s build a regression
tree using Scikit-Learn’s DecisionTreeRegressor class, training it on a noisy
quadratic dataset with max_depth=2:

import numpy as np
from sklearn.tree import DecisionTreeRegressor

np.random.seed(42)
X_quad = np.random.rand(200, 1) - 0.5 # a single random input feature
y_quad = X_quad ** 2 + 0.025 * np.random.randn(200, 1)

tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg.fit(X_quad, y_quad)

The resulting tree is represented in Figure 6-4.

x1<=0.197
mse = 0.098
samples = 200
value = 0.354
True False
x1 <=0.092 x1 <=0.772
mse = 0.038 mse = 0.074

samples = 44 samples = 156
value = 0.689 value = 0.259

mse = 0.013 mse = 0.015 mse = 0.036
samples = 24 samples = 110 samples = 46
value = 0.552 value =0.111 value =0.615

Figure 6-4. A decision tree for regression

This tree looks very similar to the classification tree you built earlier. The main
difference is that instead of predicting a class in each node, it predicts a value. For
example, suppose you want to make a prediction for a new instance with x; = 0.2. The
root node asks whether x; <0.197. Since it is not, the algorithm goes to the right child
node, which asks whether x; < 0.772. Since it is, the algorithm goes to the left child
node. This is a leaf node, and it predicts value=0.111. This prediction is the average



target value of the 110 training instances associated with this leaf node, and it results in
a mean squared error equal to 0.015 over these 110 instances.

This model’s predictions are represented on the left in Figure 6-5. If you set
max_depth=3, you get the predictions represented on the right. Notice how the
predicted value for each region is always the average target value of the instances in
that region. The algorithm splits each region in a way that makes most training
instances as close as possible to that predicted value.
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Figure 6-5. Predictions of two decision tree regression models

The CART algorithm works as described earlier, except that instead of trying to split
the training set in a way that minimizes impurity, it now tries to split the training set in
a way that minimizes the MSE. Equation 6-4 shows the cost function that the algorithm
tries to minimize.

Equation 6-4. CART cost function for regression

Zi node gnodefy(i) 2
MSEnode = ced ( )

MSE,ight where MTtnode

i
ZiEDOde y( )
Mnode

Meft Myright

J(katk) = MSEleft +

Ynode =

Just like for classification tasks, decision trees are prone to overfitting when dealing
with regression tasks. Without any regularization (i.e., using the default
hyperparameters), you get the predictions on the left in Figure 6-6. These predictions
are obviously overfitting the training set very badly. Just setting min_samples_leaf=10
results in a much more reasonable model, represented on the right in Figure 6-6.
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Figure 6-6. Predictions of an unregularized regression tree (left) and a regularized tree (vight)

Sensitivity to Axis Orientation

Hopefully by now you are convinced that decision trees have a lot going for them: they
are relatively easy to understand and interpret, simple to use, versatile, and powerful.
However, they do have a few limitations. First, as you may have noticed, decision trees
love orthogonal decision boundaries (all splits are perpendicular to an axis), which
makes them sensitive to the data’s orientation. For example, Figure 6-7 shows a simple
linearly separable dataset: on the left, a decision tree can split it easily, while on the
right, after the dataset is rotated by 45°, the decision boundary looks unnecessarily
convoluted. Although both decision trees fit the training set perfectly, it is very likely
that the model on the right will not generalize well.
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Figure 6-7. Sensitivity to training set rotation

One way to limit this problem is to scale the data, then apply a principal component
analysis transformation. We will look at PCA in detail in Chapter 8, but for now you
only need to know that it rotates the data in a way that reduces the correlation between
the features, which often (not always) makes things easier for trees.



Let’s create a small pipeline that scales the data and rotates it using PCA, then train a
DecisionTreeClassifier on that data. Figure 6-8 shows the decision boundaries of
that tree: as you can see, the rotation makes it possible to fit the dataset pretty well
using only one feature, z;, which is a linear function of the original petal length and
width. Here’s the code:

from import PCA
from import make_pipeline
from import StandardScaler

pca_pipeline = make_pipeline(StandardScaler(), PCA())
X_iris_rotated = pca_pipeline.fit_transform(X_iris)

tree_clf_pca = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf_pca.fit(X_iris_rotated, y_iris)
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Figure 6-8. A tree’s decision boundaries on the scaled and PCA-rotated iris dataset

Decision Trees Have a High Variance

More generally, the main issue with decision trees is that they have quite a high
variance: small changes to the hyperparameters or to the data may produce very
different models. In fact, since the training algorithm used by Scikit-Learn is stochastic
—it randomly selects the set of features to evaluate at each node—even retraining the
same decision tree on the exact same data may produce a very different model, such as
the one represented in Figure 6-9 (unless you set the random_state hyperparameter).
As you can see, it looks very different from the previous decision tree (Figure 6-2).
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Figure 6-9. Retraining the same model on the same data may produce a very different model

Luckily, by averaging predictions over many trees, it’s possible to reduce variance
significantly. Such an ensemble of trees is called a random forest, and it’s one of the
most powerful types of models available today, as you will see in the next chapter.

Exercises

1. What is the approximate depth of a decision tree trained (without restrictions) on a
training set with one million instances?

2. Is anode’s Gini impurity generally lower or higher than its parent’s? Is it generally
lower/higher, or always lower/higher?

3. If a decision tree is overfitting the training set, is it a good idea to try decreasing
max_depth?

4. If a decision tree is underfitting the training set, is it a good idea to try scaling the
input features?

5. If it takes one hour to train a decision tree on a training set containing one million
instances, roughly how much time will it take to train another decision tree on a
training set containing ten million instances? Hint: consider the CART algorithm’s
computational complexity.

6. If it takes one hour to train a decision tree on a given training set, roughly how
much time will it take if you double the number of features?

7. Train and fine-tune a decision tree for the moons dataset by following these steps:



a. Use make_moons(n_samples=10000, noise=0.4) to generate a moons
dataset.

b. Use train_test_split() to split the dataset into a training set and a test set.

c. Use grid search with cross-validation (with the help of the GridSearchCV
class) to find good hyperparameter values for a DecisionTreeClassifier.
Hint: try various values for max_leaf_nodes.

d. Train it on the full training set using these hyperparameters, and measure
your model’s performance on the test set. You should get roughly 85% to
87% accuracy.

8. Grow a forest by following these steps:

a. Continuing the previous exercise, generate 1,000 subsets of the training set,
each containing 100 instances selected randomly. Hint: you can use Scikit-
Learn’s ShuffleSplit class for this.

b. Train one decision tree on each subset, using the best hyperparameter values
found in the previous exercise. Evaluate these 1,000 decision trees on the test
set. Since they were trained on smaller sets, these decision trees will likely
perform worse than the first decision tree, achieving only about 80%
accuracy.

c. Now comes the magic. For each test set instance, generate the predictions of
the 1,000 decision trees, and keep only the most frequent prediction (you can
use SciPy’s mode() function for this). This approach gives you majority-vote
predictions over the test set.

d. Evaluate these predictions on the test set: you should obtain a slightly higher
accuracy than your first model (about 0.5 to 1.5% higher). Congratulations,
you have trained a random forest classifier!

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

1 P is the set of problems that can be solved in polynomial time (i.e., a polynomial of the dataset size). NP is the
set of problems whose solutions can be verified in polynomial time. An NP-hard problem is a problem that can
be reduced to a known NP-hard problem in polynomial time. An NP-complete problem is both NP and NP-
hard. A major open mathematical question is whether or not P = NP. If P # NP (which seems likely), then no
polynomial algorithm will ever be found for any NP-complete problem (except perhaps one day on a quantum
computer).

2 See Sebastian Raschka’s interesting analysis for more details.



