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Warm-up

1. Fall is here! Discuss with your neighbor the best type of
apple.

2. Complete the following model instance of PyTorch by adding
a single parameter that will be learned and applied (as a
scalar) to the input to forward to yield a prediction.

1 class Model(torch.nn.Module):

2 def __init__(self):

3

4 def forward(self, X):

5

6

Listing 1: Partial PyTorch class

Logistics

• Midterm I Thursday Oct 2

– Possible topics included on the website

– Please write to me if you have accommodations

• Lab Wednesday will be partial a conversation with Richard
Maxwell on Robotics in Theater and then we will have time
for some final review

• Extra time for Codelet 3
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Learning Objectives

• Describe the move from linear regression to logistic regres-
sion

• Understand the logistic function

• Apply log loss

• Set up multi-class classification from the system of equations,
to the relevant activation function, to the loss function

Summary: We return to classification via changing the treatment of
parameters and output from linear regression. Along the way we cover
logistic regression, softmax, and cross-entropy loss, which will become
increasingly important as we shift to neural networks.

From Modeling Regression to Classification

we will transform linear regression, a model-based regres-
sion model, to classification.

(a) Raw Data (b) Distribution of Labels (c) Fitted Line

Figure 1: Sample classification
data in a regression setting

Given a line how do we use if for classification? Let’s focus on data
with one input feature and one output feature. Figure 1 shows an
example and representations of it. We can visually see that around
0.0 is a good decision point. However, regression finds the line that
is closest to all the points and treats the output as continuous. We
need to map from our continuous output space (from our line) to a
discrete label.

Which Side Are You On?

Figure 2: Normal vector w for
the dotted line.

• What distinguishes a sequence of points as part of a line?

• Well one way to think about it is:

– Say we toss on a vector perpendicular to a single point on a line
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– All other points that make up the line are perpendicular to this
same vector

• Let’s call our perpendicular vector, w

• This w is called the normal vector of the line (or plane in higher
dimensions)

• In other words a line (or plane) is a surface with the same normal
vector over all subsets of its points

Question

We gain a nice thing by considering the normal vector of our
decision boundary. Namely, we can determine whether a point
occurs above or below the line. How do we do this? (Hint: Con-
sider Figure 3 and the mathematical operations we have been
using for vectors).

Figure 3: Sample vectors for
points x1 and x2 above and be-
low the dashed line.

Lack of Confidence in the Center

Fitting a line that satisfies the criteria above (that is, that groups
points on different sides of the line), yields Figure 4.

Figure 4: A line fit to group
labels onto other sides of the
line.

Question

As we approach the line in Figure 4, are we more confident or
less confident that those points are correctly labeled? Does our
model capture this intuition?

• Assumption: Our data is linearly sepearable

• Classification rule: For a test input xtest, assign a label of 1, if it’s
predicted value is greater than or equal to 0.5, otherwise assign the
label 0

• Formal definition: Denote our test point as xtest, our parameters as
w (including the bias term), and our target output y (whose values
are 0 or 1). Additionally, let σ(t) = 1

1+e−t . Then our classifier h
applied to our test point, h(xtest) is

1 if σ(w · xtest) ≥ 0.5 (1)

0 if σ(w · xtest) < 0.5 (2)

(3)



logistic regression i 4

σ(t) is called the logistic function.

Question

1. What happens to the logistic function as t becomes a larger
and larger positive value?

2. What happens to the logistic function as t becomes a larger
and larger negative value?

3. How does the proposed modification to our classification
problem address the issues with the points near the threshold
(consider Figure 5).

Figure 5: A model fit with to
satisfy the logistic regression
criteria.

Learning Classification: Log Loss

logistic regression uses a loss function called the log loss or
logistic loss.

min
w

− 1
m

m

∑
i=1

[y(i)log( p̂(i))+ (1− y(i))log(1− p̂(i))] where p̂(i) = σ(w · x(i))

Practice Problems

What is the log loss associated with the following classifier:
sample p̂ y

1 0.8 0

2 0.6 1

3 0.2 0

4 0.4 1

Multi-Class Classification Formulation

we will now modify this approach to work in multi-class classi-
fication settings. Multi-class classification is an approach to model-
ing classification with more than a binary output. That is, we might
be interested in modeling:

• Whether a cat or a dog or both occurs in an image

• What word is likely to come next

• Whether an email is Spam, Marketing, or Important

• . . .
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System of Equations

o1 = w11x1 + w12x2 + w13x + 3 + w14x4 + b1 (4)

o2 = w21x1 + w22x2 + w23x + 3 + w24x4 + b2 (5)

o3 = w31x1 + w32x2 + w33x + 3 + w34x4 + b3 (6)

o = Wx + b

Where, we have:

W =

 w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34


Multi-Class Classification Output

given our vector of outputs o, we could apply the logistic func-
tion to each output independently. This would be encoding an as-
sumption that each of the output labels for each input are indepen-
dent:

label raw output σ(output)
cat 12 0.9
dog 1 0.5

lizard -100 0.01

A New Activation Function

There are many problems where we do not want to treat the multi-
class classification output as independent. Consider the choice of
the next word in a sentence, for example. Only one word can occur,
and we expect some organization among the output (e.g., if the word
‘eating’ is likely in the context Bob is than probably ‘hungry’ is also
likely and not something like ‘cat’).

We need a new function to accomplish this. Note, we call these
functions which apply to the raw output of a model activation func-
tions. A common one is softmax, we applies element-wise.1 1 In the softmax equation, zj is the jth

element of the output vector z which
has K dimensions (e.g., z ∈ RK).

Softmax(zj) =
ezj

∑K
k=1 ezk

(7)
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Practice Problems

Apply softmax to the following output from a model for one
sample:

label raw output Softmax(output)
cat 2

dog 1

lizard -1

A New Loss Function

Finally, we need a new loss function to learn in the multi-class classi-
fication domain. Our aim, in multi-class classification is to maximize
the probability of our data (just like we discussed recently with re-
gression).

P(Y|X) =
n

∏
i=1

P(y(i)|x(i)).

Notice that our typically dataset looks something like below:

input output
x(1) cat
x(2) dog
x(3) cat
x(4) kangaroo

When we take in a sample like x(1), we don’t actually have a prob-
ability that the label is cat, for example. We just have a sample. To get
around this, we employ a trick, called one hot encoding. That is, we
create a vector representation of our multi-class output with an index
for each possible output. We put a one for the observed label and a
zero everywhere else. For example,

label one-hot
cat [1, 0, 0]
dog [0, 1, 0]

kangaroo [0, 0, 1]

We are allowed to use the factorization since we assume that
each label is drawn independently from its respective distribution
P(y|x(i)). Since maximizing the product of terms is awkward,

We make this an optimization problem (in particular, a minimiza-
tion problem) using the negative log-likelihood.
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− log P(Y|X) = −
m

∑
i=1

log P(y(i)|x(i)) =
m

∑
i=1

l(y(i), ŷ(i)),

where for any pair of label y and model prediction ŷ over K classes,
the loss function l is

l(y, ŷ) = −
K

∑
j=1

yj log ŷj.

All together, we typically take the average loss over our data to
find the best parameters.

min
W

− 1
m

m

∑
i=1

K

∑
j=1

y(i)j log ŷ(i)j where ŷ(i) = Wx(i)

Before Next Class

• Study for the Midterm
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