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Warm-up

1. Discuss with your neighbor the strangest food combination
you’ve tried.

2. Given g(x, z) = 2x3 + 3z:

(a) What is the derivative of g(x, z) with respect to x (i.e.,
∂g(x,z)

∂x )?

(b) What is the derivative of g(x, z) with respect to z (i.e.,
∂g(x,z)

∂z )?

Logistics

• Codelet 2 on Linear Regression Due Friday

• Office Hours today 3-6PM 331 Bernstein

Learning Objectives

• Apply stochastic gradient descent

• Reason about the choice of closed form and gradient based
solutions to optimization

• Articulate the relationship between probability and model fit

Summary: We lay out the optimization problem for linear regression
and propose two solutions: an analytical one and an algorithmic one.
We then consider the choice between these and conclude with a deeper
dive into the foundations of linear regression.
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Refresh Aims

in linear regression, we are seeking a set of parameters that
best fits our data. Last class, we defined best fit with respect to
Mean-Squared Error (MSE):

MSE :=
1
m

m−1

∑
i=0

(y(i) − ŷ(i))2 (1)

The aim, then, of linear regression is to produce a line whose
predictions are closest (on average) to the observed values. We find
this line by minimizing our loss over our dataset:

arg min
w∈Rn+1

MSE(X, y; w) (2)

We will consider two approaches to minimizing this loss: (1) the
closed form (or analytic) solution and (2) the application of an itera-
tive algorithm.

Optimization Approaches

Closed Form

Figure 1: Mean-squared error
with different parameters.

unlike most ml models and optimization problems, linear regres-
sion has an analytic solution. This solution is where the gradient of
our cost function is 0. In Figure 1, this is the bottom of the basin.

First, let’s consider reformulating MSE over all of our samples.1

1 Notice the use of the vector norm,
∥v∥, which is defined as:

∥v∥ =

√
n

∑
i=1

v2
i

Squaring the norm gets us back to our
MSE.

arg min
w∈Rn

MSE(X, y; w) =
1
m
∥y − Xw∥2 (3)

Let’s find the minimum (notice we reorder some terms to make it
slightly easier).

∂w
1
m
∥Xw − y∥2 = 0

Incremental Algorithm: Gradient Descent Sketch

Not all functions are so easily solved analytically, as we will see later
in the course. A more general approach to optimization is gradient
descent.
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General Scheme

• Using a (twice) differentiable loss function

• Propose a initial guess for parameters

• While not converged:

1. Determine the direction to move each parameter closer to a
minima

2. Increment each parameter by some amount in that direction

3. If changes in the parameters or the loss are under some thresh-
old, then converged

Gradient Descent: Dante’s Other Inferno

in order to ground gradient descent, we have to determine or
set a few things:

1. How we determine direction to move

2. How much to change parameters

3. How much data to use in each update

Let’s formulate the problem in a more concrete way to help ad-
dress each choice. Say we have a dataset of 4 samples each with 3

features:

X =



x(1)1 x(1)2 x(1)3

x(2)1 x(2)2 x(2)3

x(3)1 x(3)2 x(3)3

x(4)1 x(4)2 x(4)3


and y =


y(1)

y(2)

y(3)

y(4)



We then have 4 parameters, the 3 from each feature and the 1 for
the bias:

w =

 w1

w2

w3

 and b

We have been building towards an elegant solution to both the di-
rection and magnitude problems above (where to move and by how
much). Namely, we can use the partial derivative of our loss func-
tion with respect to each parameter to determine both the direction
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to move (the reverse of the sign of the gradient) and the magnitude
(we take smaller gradients to mean we are close to the relevant mini-
mum). Our update rule, then, looks like:2 2 In Equation 4, wi is the relevant pa-

rameter, wnext step
i is the parameter

updated from a step of gradient descent
and η is the learning rate (a hyperpa-
rameter).

wnext step
i = wi − η

∂Loss(X; w)

∂wi
(4)

This is an iterative algorithm, where we update our weights in
increments looping over our whole dataset some number of times
(each loop over our entire dataset is called a epoch). In calculating
the loss, in order to update the parameters, we consider a partition of
our data. There are three broad categories:

1. Stochastic Gradient Descent: We update after each sample

2. Batch Gradient Descent: We update after calculating the loss over
the entire dataset

3. Mini-Batch Gradient Descent: We update after calculating the
loss over a subset of our data (between one sample and the en-
tire dataset). Each subset is called a mini-batch or, confusingly, a
batch.

Practice Problems

Given a dataset X =


1 −1 0
−2 0 −1
3 1 2
−1 −2 1

 with labels y =


2
1
0
−1


and initial parameters w =

 −1
1
0

 and b = 1:

1. Calculate the changes to the weights after one step of
stochastic gradient descent with a learning rate of 0.5

2. What is the new ŷ for the first sample after the first step of
gradient descent?
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Reflections on Optimization

why wouldn’t we always use the closed form solution for linear
regression? Let’s consider the computational complexity of the rele-
vant linear algebra operations. For a full list check out this Wikipedia
page.

There are two operations to focus on, matrix multiplication and
the calculation of a matrix’s inverse. Matrix multiplication applies for
us for XTX which is O(n2m). Calculating the inverse is O(n3). That
means the closed solution is O(n2m + n3), being dominated by the
inverse, while a single step of gradient descent is O(n2m).3 3 One step is w − η 2

m (XTXw − XTy)
which is O(n2m + n2 + nm).

Question

When should we favor gradient descent?

Before Next Class

• Read and pre-class quiz

• Work on Codelet 2

https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations#Matrix_algebra
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