Linear Regression I

COSC 410: Applied Machine Learning
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Warm-up

1. Talk to your neighbor about your favorite dessert

2. Given the data in Figure 1, what is the Gini impurity of the
root node (before we apply a decision boundary)? < . .
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. . Figure 1: A dataset with two
® Codelet 1is due Friday features and three output la-
e Lab 2 is due Friday bels (an orange circle, a blue

triangle, and a green star).
e Codelet 2 is posted on the website

— Implementing linear regression based on the book
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Learning Objectives

Describe the basic aims of linear regression

Map the linear regression problem to equation
* Apply some key concepts from linear regression

¢ Apply a regression loss

* Describe the optimization problem for linear regression

Summary: We lay out the motivation, formalization, and loss for linear
regression. Along the way, we refresh some useful mathematical opera-
tions and start building intuitions about representational learning.

Model Goal

LINEAR REGRESSION WILL BE THE BASIS, surprisingly, for vanilla
neural networks, with some additional small tweaks. So let’s dig into
this type of model a bit more deeply and see if we can build solid



intuitions that will help us later. Let’s start with some fake data, in
Figure 2.

At its core the aim of regression is to predict a numerical value
drawn from some continuous distribution. In our example, we want
to uncover the relationship between x;, and y. Our assumption in
linear regression is that this relationship is linear.

Starting Small: Singly None

WE WILL BEGIN WITH A SINGLE POINT, highlighted in red in Fig-
ure 2. We are trying to find parameters that let’s us predict the ob-
served y value from the input, x(0).1 In this case, we want to find
parameters that maps from 1.18 (our sample’s first feature value)
to 7. In other words, we are trying to solve for wj in the following
equation.?

y= wgl)xgo) +b

What values would you put for w; and b and why?

Building Out: Many Stones Can Form a Line

IN CONSIDERING MANY SINGLE DIMENSIONAL SAMPLES, we need
to draw on a mathematical object in our skill set, vectors. Recall, a
vector is an array of scalars, for example, a is a 3 dimensional vector
(i.e., a € R3):3

Suppose we considered all our points, we would have two vectors:

x and y. Then we are working with

§=wix+b

We can try out some different parameters and see which is bet-
ter. We are comparing our model’s predictions, which we call §
(pronounced, y hat), to our true outputs, y (sometimes called gold
outputs).
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Figure 2: A basic dataset with
one feature and a continuous
output label. One sample data
point is highlighted in red.

* The superscript here refers to the

sample and the subscript refers to the
dimension of the input. For example,
xgs) refers to the 3rd dimension — 4th
dimension if we count from zero — of

2

the 8th — or gth if we count from zero —

input.

2 That is, we are assuming the output

is determined by a scaling of our input

plus a term, which we call the bias.

3In a, each row is a sample. We have
three samples each with one feature.



The Foundation: One Sample with Many Features

WHAT IF OUR INPUT IS COMPOSED of more than one feature (e.g.,
houses represented by number of rooms, number of bathrooms,
square footage, etc.)? We’d then want to learn a weight (or parame-
ter) for each input feature:

Y = wWiX] + wWoXy +waxz + -+ WXy + b

Notice that we have a number of scalar parameters and a number
of scalar input features. Perhaps, we can write this with reference to
two vectors, w and x.

To do this, recall the dot product.# The dot product is defined
between vectors of equal length n as:

n
V-W = Zviwi = VoW +Viwy + -+ VywWy
i=0

That is, the dot product of two vectors yields a scalar. We can
interpret this scalar as a measure of the angle between the vectors.
Formally, the dot product, in geometric terms, is:

v-w = [|v|[[|w]|cos(6)

Where ||v]| is the magnitude (length) of the vector v. The defini-
tion should be familiar if you recall euclidean distance:

1Vl = /B3 + 22+ + 03
We can visualize this relationship by noting that the dot product
projects one vector onto the other as in Figure 3.

1. What is the dot product between [ ; 1 and [ ; 1?

2. What are two non-zero vectors (zero vectors are vectors of all

zeros) which have a dot product of zero with [ ; ] ?

- J

We can now represent our model more succinctly using vectors as

y:WX—Fb
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4 For a refresher on dot products, see
this video.

/

|A| cos@

Figure 3: Projection of one vec-

tor onto another.

This applet is a nice way to interactively
see the relationship between magni-
tude, direction, and the angle between
vectors via the dot product.


https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/dot-cross-products/v/vector-dot-product-and-vector-length
https://www.falstad.com/dotproduct/
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We can make this even more succinct by add the bias to our

w1
w3
. w. .
weight vector w = > | and adding a 1 to the bottom of our
Wn
b
X1
X2
. X
input vector x = 3 1. Now,
Xn
1
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The Building: Many Samples with Many Dimensions

FINALLY, WE SHOULD CONSIDER HOW TO REPRESENT MANY SAM-
PLES of many dimensions. To represent this, we will use matrices.
Following our early convention with rows as samples and columns
as features, we can translate our n-dimensional samples into a matrix

like the following
a(()l) agl) Elél) 111(11)
— a(()Z) a§2) aéz) aﬁf)
A ) )

We need some way of applying or parameters to these samples.
Luckily we have matrix multiplication. Recall, our quickly learn,
that matrix multiplication builds on the dot product as a means of

multiplying matrices together.> It is visually depicted in Figure 4. 5 See this video series for a refresher on
Formally, suppose we have two matrices: matrix multiplication.
B
b11 bJ 3
200) 201) 02) boo) o1 bog —
A= aqp) Aan1) 912 and B=| b bay bag | = |
a a a b b b 71 [T 7]
20) %221) 4222 (20 Y1) Y22 31.| s N[e) |
Matrix multiplication would return a new matrix: A ° [“- : "'
a“|a3.; e ———- o
C00) €01 €02) oo J] (L i

C=1 oo can cap
€20) @1 €22
where: Figure 4: Visual representation
of matrix multiplication to de-
termine the output in two cells.


https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices/x9e81a4f98389efdf:multiplying-matrices-by-matrices/v/matrix-multiplication-intro
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2
Clij) = 2 Ak bikj)
k=0

= aGi0)bo)) +ainba) T 4020w,

1. What is AB when A =

2. Matrix multiplication has a shape restriction. What is it?

. J

Notice, that matrix multiplication is
nothing more than the dot product be-
tween the rows in A and the columns in
B. So we can use matrix multiplication
as a way of doing many dot products
between vectors.

How do we generalize our linear regression equation to work

with matrices?

. _/
yl:-/., AR g
. T =
Loss Function . Xw%’/

CONSIDER THE POSSIBLE MODELS IN Figure 5. Which is better and

0
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why? One natural option to quantify goodness is to say that a line 5

is a good fit to our data if it is as close as possible to our data. That

is, we will consider are predictions § and our true labels y. We can Figure 5: Four possible models
ask, how close were we with each prediction? We quantify this as fit to our sample data.

y() — 9l)). We need some way of aggregating over all our predictions,
one good option is the mean:

1 m—1
m

i=0



Practice Problems

We are given true targets y and predictions ¥:

sample | y |7
1 3 |2
2 -1| o0
3 5|4
4 213

What is the loss associated with this model?

N J

What is a problem with our current loss function based on what

you just calculated?

The Land: Learning as Optimization

GIVEN A DATASET, A MODEL, AND A LOss, we would like to use
these productively to solve a task. With parameterized models, like
linear regression, we are after the set of parameters that minimize our
loss (i.e., that are good). In standard linear regression, we are seeking
to minimize mean squared error over our dataset.®

arg min MSE(X, y; w)

welRn+1

We can visualize our optimization goal by comparing how differ-
ent parameters (w’s in our case) impact the MSE over all of our data.
Figure 6 does just that.

Based on Figure 6, what parameters do we want and why?

Before Next Class

* Pre-class quiz

e Work on codelets
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¢ w is an element of R"*! and not R"
because we are folding in the bias term,
so there are n parameters for each
feature of our input and 1 bias term.

Figure 6: Mean-squared error
with different parameters.
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