Course Introduction

Forrest Davis

August 28, 2025

Fall 2025 COSC410A: Applied Machine Learning

Colgate University

About me

About me

Prof. Forrest Davis

- Pronouns he/him
- Office 322 Bernstein
- Background Computer Science,
 Mathematics, and Linguistics
- Research using AI to find differences between our experience with language(s) and our knowledge of language(s) (including, English, Spanish, Italian, Chinese)
- Loves coffee, the outdoors, cats

About me

Fig

- Pronouns he/him
- Background anthropology and ornithology
- Research training humans to feed cats all the time
- Loves windows, birds, and food

What the course is and isn't

A disclaimer of the course scope

- We aren't after
 - Artificial General Intelligence (for one, it's either impossible or an incoherent goal driven by marketing)
 - Field specific algorithms (at a deep level), including NLP (despite my love of this area), robotics, genetics, games, vision, etc.

A disclaimer on the course scope

- I hope you leave the course able to
 - Map from problems to appropriate ML techniques
 - Critically evaluate existing systems and models
 - Understand some of the underlying math and foundational concepts behind ML
 - Engage in public scholarship
 - Prototype an ML system to solve something you care about
- Also,
 - Have fun growing your interest and skills in an exciting area of computer science

The learning objectives

Broad Goals

- Practical ML for interdisciplinary problems
 - Hands on practice applying and testing a wide-range of machine learning algorithms
 - Both "traditional" and neural network based
 - Drawing on standard python libraries (scikit-learn, PyTorch)
 - Understand the components of a machine learning pipeline
 - Data
 - Model
 - Objectives and Performance metrics
 - Optimization algorithms
 - Design, conduct, and present a ML project using public or self-collected datasets

Broad Goals

- Fundamental Knowledge
 - Small scale hands on walk troughs of the math behind ML techniques
 - Dig deeper into the class of problems solved by particular ML techniques

The course structure

Topic Overview

- Background
 - What is ML?; ML pipelines; data quality; preprocessing
- Supervised Learning
 - Regression; classification; nearest neighbors; decision tress; ...
- Deep Learning
 - Multilayer perceptrons; convolutional networks; recurrent networks; transformers
- Unsupervised Learning
 - Clustering: dimensionality reduction; ...
- Additional ML Topics
 - Reinforcement Learning

Course structure - Class

- Topic Introduction
 - Lecture, example-walk through together, etc.
- Hands-on practice
 - Work in small groups by hand

Course structure - Readings

- Required readings will be given on the course website and should be completed prior to class
 - Most readings are from the online textbook
 - Non-textbook readings will be posted as PDFs or links
- A brief reading quiz posted on Moodle will accompany many of the readings and is due prior to the relevant class

Course structure - Codelets/Labs/Midterms

- Codelets
 - Small programming tasks motivated by core skills and concepts
 - Reinforces the conceptual topics in class with implementation
- Labs
 - Apply concepts from class
 - Work individually or in groups
- Two written midterms
 - Oct 2 (in class) covers non-neural techniques
 - Nov 13 (in class) covers non-neural techniques

Course structure - Society Reflection

- Connect machine learning/Al with real life implications
- Attend at least one of the following events (more details in the syllabus)
 - Robots as characters?
 - Films by Lawrence Lek
 - Maria Antoniak Lecture
- Write a 2 page, single-spaced response that addressing the points in on the syllabus

Course structure - Capstone Project

- Opportunity to apply machine learning to a topic of your choice
- Work in teams of up to 3
- Several deadlines to encourage consistent progress
 - See syllabus
 - More details to follow on the course website (when we get there)

Ways to Get Help

- Each other
- Discord
 - Asynchronous questions (linked on the course website)
- Office hours
 - 3-6PM Tuesday in 331 Bernstein (upstairs conference room)
- Email (though discord is preferred for questions everyone can benefit from)

Fostering Independent Problem Solving Skills

- In this class you should productively struggle
 - Things are difficult on purpose, but you shouldn't spend 2 hours on a codelet with no progress. Reach out to me or others if you find yourself stuck for a long while!
 - You should learn to balance asking for help and spending time really digging into your problem
 - You'll learn more struggling through a problem on your own then simply giving up quickly and asking for help
 - You'll learn how to deal with problems (e.g., what resources you find helpful, how to better debug) which will help you later!
 - Help me help you help yourself

Key parts of syllabus

Grading - Course

Grade	Codelets (S/U)	Exams (2)	Capstone	
А	8/8	>90% avg	>90% avg and 4/4 S	
В	6/8	80-89% avg	80–89% avg	
			and 3/4 S	
С	4/8	70–79% avg	70–79% avg	
			and 2/4 S	
D	2/8	60-69% avg	60–69% avg	
			and 1/4 S	
F	Failure to meet expectations for D			
	results in an F			

Table 1: Grading breakdown for the course. Final grade is the **mean** of the three categories.

Grading - Lab

Grade	Labs (S/U)	Attendance	
А	6/6	0 unexcused absences	
В	4/6	1 unexcused absences	
С	3/6	2 unexcused absences	
D	2/6	2 unexcused absences	
F	Failure to meet expectations for D results in an F		

Table 2: Grading breakdown for the lab. Final grade is the **mean** of the two categories

Attendance

- Please attend class
 - It's part of your grade
 - It helps you learn
- Contact me prior to any absence
 - Check-in email within 48 hours of the relevant class
 - Include a brief (2-4 sentences) of what was covered in the class and any thoughts/questions you have
- While in class, make space for everyone to contribute

Late Policy

- No late submission for capstone related deadlines
 - You will receive a 0
- I'm reasonably flexible about other deadlines if you get in touch with me in advance
 - Submitting work late with no prior approval (or relevant administrative dean approval) will receive a 0

Academic Honesty

- Ultimately, you are responsible for your own work and the thought behind it
- Do not share assignment code (or pseudo code) with your peers
- Do not use generative AI systems for easy answers
- READ THE SYLLABUS

Before next class

- Read Ch. 1
- Complete survey: https://forms.gle/yHhPQxwhFSLrCeWU7
- Read syllabus
- Complete pre-class quiz (on Moodle and linked on website)