Codelet 7: Sparse Autoencoder using PyTorch

The due date for this codelet is Wednesday, Mar 26 at 11:59PM.

Introduction

The aim of this codelet is to build on your PyTorch skills by implementing a sparse autoencoder on MNIST
data. You will also gain hands-on practice building a custom loss function that mixes multiple factors. You
should draw on your prior codelets and the class lecture on autoencoders.

Important: Only use PyTorch, numpy, pandas, matplotlib, PIL, and in-built Python for this
codelet. The use of any other libraries, including the books d21 library results in an automatic
unsatisfactory grade for this assignment. A core goal of this class is to build your competencies as
a machine learning engineer. I want to minimize abstractions from other libraries so that you build these
skills.

Outline

[0 Grading

0 Sparse Autoencoder
[0 Model
[J Visualizations
(] Training

Your assignment
Your task is to:

1. Download codelet7.zip from the course website and open it. You will find these instructions,
utils.py, which includes a basic plotting function, a folder figures, which includes sample visu-
alizations prior to training, and codelet7.py, which has scaffolding for you.

2. Complete each of the 3 broad tasks below in codelet7.py and include a file called codelet7.pdf with
your answers to the written questions.

Grading
When assessing your work, satisfactory achievement is demonstrated, in part, by:

e Simple, minimal, and clear code

e Code utilizes PyTorch methods in a way that simplifies your code

e Code passes relevant tests

» Explanation extends beyond repeating the textbook/material online

e Response are concrete and clearly demonstrate an understanding of the concepts

Sparse Autoencoder

You will implement a sparse autoencoder using Pytorch. By the end, you will visualize your model’s recon-
structed images and conduct some initial analysis of what the sparse features represent. You have three
tasks, of varying difficulty:

1. Implement a model class
2. Complete visualizations for model representations and output
3. Train a model on MNIST



Help

To orient you to your problem, and to scaffold the later visualization task, a plotting function, show has been
provided with in utils.py and imported into codelet7.py. When first running codelet7.py, the MNIST
will be loaded and put in a PyTorch dataloader (train_dataloader). A transformation is applied to the
image to normalize the pixel values around 0 and to make them PyTorch tensors. Below, I've provided a
small bit of code that will plot 64 images, in 4 rows of 16 images, so that you can see the data. It uses
make_grid from torchvision which takes a list of images and a desired number of images per row, and
returns a grid which we can pass to show. You should add this code to codelet7.py and confirm you can
generate plots.

batch = next(iter(train_dataloader))
images, _ = batch

g = [image for image in images]

grid = make_grid(g, 16)

show(grid)

Model

In this codelet, the aim is to build a simple sparse autoencoder and apply it to MNIST data. Some scaffolding
is provided in codelet7.py. Your task is to complete the __init__, forward, batched_sparsity_penalty,
and loss_function methods of the SparseAutoencoder class. The sparse autoencoder we are building is a
simple encoder-decoder structure. The encoder should be a torch Linear layer mapping inputDims to hDims
which a Sigmoid activation function is applied to. The decoder should be a torch Linear layer mapping
hDims to inputDims and applying a Tanh activation function. After creating the linear layers, you should
use init_weights, which takes a linear layer, to initialize the weights. We are using Xavier Initialization,
which helps our model converge faster and more consistently. A brief overview of this initialization strategy,
if you are curious, can be found here.

The sparseness of the sparse autoencoder is enforced by the use of regularization, discussed in class. In
batched_sparsity_penalty, you should calculate the following penalty (which uses KL divergence):

| 3

Y plog 2+ (1 - p)log P
=0 P Py

(1)

where p is 0.05, j ranges over the number of hidden nodes, and ﬁj is the average activation of hidden node j
for input. That is, we want the average activation of a node to approach 0.05 (i.e., it should selectively “fire”
for a subset of the input). Note that we have two edge cases that pose a problem for this penalty, when pj
is 0 and when it is 1 (because log is not defined for 0). To avoid this, you should use torch.clamp to clamp
the values between le=® and 1 — le™8.

For example, given the following hidden representations of 5 inputs (where the hidden representation has 3
nodes), we should get an output of 1.1490.

03 0. 0.1
02 0. 0.2
05 0. 0.1 (2)
05 0. 0.3
05 0. 0.3

Finally, the loss should combine mean squared error and the sparsity penalty, in loss_function. In particu-
lar you should add to the MSE between the true and predicted pixel values to the sparsity penalty, weighted
by le .

You evidence completion of this task with successfully training a model.


https://cs230.stanford.edu/section/4/

Visualizations

You should write code to generate two visualizations. One plots 16 rows of input images and their recon-
structed output using your model. Another visualizes the relationship between a given hidden node and
input. In particular, you should write code that will plot the 100 input images that have the highest hidden
activation for a given node. Each row of your plot should have 10 images. Examples of both plots for a
model prior to training with 10 hidden units is provided in figures.

You evidence completion of this task with successfully training a model.

Training

Finally, you should train a model for 20 epochs using the Adam optimizer with a learning rate of 0.0001.
Your model should have 10 hidden dimensions. For comparison purposes, below is my initial and final loss
after 20 epochs.

Epoch: 1/20 - Train Loss: 0.8029
Epoch: 20/20 - Train Loss: 0.5329

To evidence completion of this task, you should add to the pdf accompanying your code your initial and
final loss values and the two visualization figures for your trained model. Additionally, you should look at a
few nodes and comment on, at a high level, what you think is being learned as the features in the hidden
representation.



	Codelet 7: Sparse Autoencoder using PyTorch
	Introduction
	Outline
	Your assignment
	Grading
	Sparse Autoencoder
	Help
	Model
	Visualizations
	Training



