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Chapter 6. Decision Trees

Decision trees are versatile machine learning algorithms that can perform both
classification and regression tasks, and even multioutput tasks. They are powerful
algorithms, capable of fitting complex datasets. For example, in Chapter 2 you trained a
DecisionTreeRegressor model on the California housing dataset, fitting it perfectly
(actually, overfitting it).

Decision trees are also the fundamental components of random forests (see Chapter 7),
which are among the most powerful machine learning algorithms available today.

In this chapter we will start by discussing how to train, visualize, and make predictions
with decision trees. Then we will go through the CART training algorithm used by
Scikit-Learn, and we will explore how to regularize trees and use them for regression
tasks. Finally, we will discuss some of the limitations of decision trees.

Training and Visualizing a Decision Tree
To understand decision trees, let’s build one and take a look at how it makes
predictions. The following code trains a DecisionTreeClassifier on the iris dataset
(see Chapter 4):

from sklearn.datasets import load_iris 
from sklearn.tree import DecisionTreeClassifier 
 
iris = load_iris(as_frame=True) 
X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values 
y_iris = iris.target 
 
tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42) 
tree_clf.fit(X_iris, y_iris)

You can visualize the trained decision tree by first using the export_graphviz()
function to output a graph definition file called iris_tree.dot:

from sklearn.tree import export_graphviz 
 
export_graphviz( 
        tree_clf, 
        out_file="iris_tree.dot", 
        feature_names=["petal length (cm)", "petal width (cm)"], 
        class_names=iris.target_names, 
        rounded=True, 



        filled=True 
    )

Then you can use graphviz.Source.from_file() to load and display the file in a
Jupyter notebook:

from graphviz import Source 
 
Source.from_file("iris_tree.dot")

Graphviz is an open source graph visualization software package. It also includes a dot
command-line tool to convert .dot files to a variety of formats, such as PDF or PNG.

Your first decision tree looks like Figure 6-1.

Figure 6-1. Iris decision tree

Making Predictions
Let’s see how the tree represented in Figure 6-1 makes predictions. Suppose you find
an iris flower and you want to classify it based on its petals. You start at the root node
(depth 0, at the top): this node asks whether the flower’s petal length is smaller than
2.45 cm. If it is, then you move down to the root’s left child node (depth 1, left). In this



case, it is a leaf node (i.e., it does not have any child nodes), so it does not ask any
questions: simply look at the predicted class for that node, and the decision tree predicts
that your flower is an Iris setosa (class=setosa).

Now suppose you find another flower, and this time the petal length is greater than 2.45
cm. You again start at the root but now move down to its right child node (depth 1,
right). This is not a leaf node, it’s a split node, so it asks another question: is the petal
width smaller than 1.75 cm? If it is, then your flower is most likely an Iris versicolor
(depth 2, left). If not, it is likely an Iris virginica (depth 2, right). It’s really that simple.

NOTE
One of the many qualities of decision trees is that they require very little data preparation. In fact, they
don’t require feature scaling or centering at all.

A node’s samples attribute counts how many training instances it applies to. For
example, 100 training instances have a petal length greater than 2.45 cm (depth 1,
right), and of those 100, 54 have a petal width smaller than 1.75 cm (depth 2, left). A
node’s value attribute tells you how many training instances of each class this node
applies to: for example, the bottom-right node applies to 0 Iris setosa, 1 Iris versicolor,
and 45 Iris virginica. Finally, a node’s gini attribute measures its Gini impurity: a node
is “pure” (gini=0) if all training instances it applies to belong to the same class. For
example, since the depth-1 left node applies only to Iris setosa training instances, it is
pure and its Gini impurity is 0. Equation 6-1 shows how the training algorithm
computes the Gini impurity G  of the i  node. The depth-2 left node has a Gini impurity
equal to 1 – (0/54)  – (49/54)  – (5/54)  ≈ 0.168.

Equation 6-1. Gini impurity

In this equation:

G  is the Gini impurity of the i  node.

p  is the ratio of class k instances among the training instances in the i  node.
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NOTE
Scikit-Learn uses the CART algorithm, which produces only binary trees, meaning trees where split
nodes always have exactly two children (i.e., questions only have yes/no answers). However, other
algorithms, such as ID3, can produce decision trees with nodes that have more than two children.

Figure 6-2 shows this decision tree’s decision boundaries. The thick vertical line
represents the decision boundary of the root node (depth 0): petal length = 2.45 cm.
Since the lefthand area is pure (only Iris setosa), it cannot be split any further.
However, the righthand area is impure, so the depth-1 right node splits it at petal width
= 1.75 cm (represented by the dashed line). Since max_depth was set to 2, the decision
tree stops right there. If you set max_depth to 3, then the two depth-2 nodes would each
add another decision boundary (represented by the two vertical dotted lines).

Figure 6-2. Decision tree decision boundaries

TIP
The tree structure, including all the information shown in Figure 6-1, is available via the classifier’s
tree_ attribute. Type help(tree_clf.tree_) for details, and see the this chapter’s notebook for
an example.



MODEL INTERPRETATION: WHITE BOX VERSUS BLACK BOX
Decision trees are intuitive, and their decisions are easy to interpret. Such models
are often called white box models. In contrast, as you will see, random forests and
neural networks are generally considered black box models. They make great
predictions, and you can easily check the calculations that they performed to make
these predictions; nevertheless, it is usually hard to explain in simple terms why the
predictions were made. For example, if a neural network says that a particular
person appears in a picture, it is hard to know what contributed to this prediction:
Did the model recognize that person’s eyes? Their mouth? Their nose? Their shoes?
Or even the couch that they were sitting on? Conversely, decision trees provide
nice, simple classification rules that can even be applied manually if need be (e.g.,
for flower classification). The field of interpretable ML aims at creating ML
systems that can explain their decisions in a way humans can understand. This is
important in many domains—for example, to ensure the system does not make
unfair decisions.

Estimating Class Probabilities
A decision tree can also estimate the probability that an instance belongs to a particular
class k. First it traverses the tree to find the leaf node for this instance, and then it
returns the ratio of training instances of class k in this node. For example, suppose you
have found a flower whose petals are 5 cm long and 1.5 cm wide. The corresponding
leaf node is the depth-2 left node, so the decision tree outputs the following
probabilities: 0% for Iris setosa (0/54), 90.7% for Iris versicolor (49/54), and 9.3% for
Iris virginica (5/54). And if you ask it to predict the class, it outputs Iris versicolor
(class 1) because it has the highest probability. Let’s check this:

>>> tree_clf.predict_proba([[5, 1.5]]).round(3) 
array([[0.   , 0.907, 0.093]]) 
>>> tree_clf.predict([[5, 1.5]]) 
array([1])

Perfect! Notice that the estimated probabilities would be identical anywhere else in the
bottom-right rectangle of Figure 6-2—for example, if the petals were 6 cm long and 1.5
cm wide (even though it seems obvious that it would most likely be an Iris virginica in
this case).



The CART Training Algorithm
Scikit-Learn uses the Classification and Regression Tree (CART) algorithm to train
decision trees (also called “growing” trees). The algorithm works by first splitting the
training set into two subsets using a single feature k and a threshold t  (e.g., “petal
length ≤ 2.45 cm”). How does it choose k and t ? It searches for the pair (k, t ) that
produces the purest subsets, weighted by their size. Equation 6-2 gives the cost function
that the algorithm tries to minimize.

Equation 6-2. CART cost function for classification

Once the CART algorithm has successfully split the training set in two, it splits the
subsets using the same logic, then the sub-subsets, and so on, recursively. It stops
recursing once it reaches the maximum depth (defined by the max_depth
hyperparameter), or if it cannot find a split that will reduce impurity. A few other
hyperparameters (described in a moment) control additional stopping conditions:
min_samples_split, min_samples_leaf, min_weight_fraction_leaf, and
max_leaf_nodes.

WARNING
As you can see, the CART algorithm is a greedy algorithm: it greedily searches for an optimum split at
the top level, then repeats the process at each subsequent level. It does not check whether or not the split
will lead to the lowest possible impurity several levels down. A greedy algorithm often produces a
solution that’s reasonably good but not guaranteed to be optimal.

Unfortunately, finding the optimal tree is known to be an NP-complete problem.  It requires O(exp(m))
time, making the problem intractable even for small training sets. This is why we must settle for a
“reasonably good” solution when training decision trees.

Computational Complexity
Making predictions requires traversing the decision tree from the root to a leaf.
Decision trees generally are approximately balanced, so traversing the decision tree
requires going through roughly O(log (m)) nodes, where log (m) is the binary
logarithm of m, equal to log(m) / log(2). Since each node only requires checking the
value of one feature, the overall prediction complexity is O(log (m)), independent of
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the number of features. So predictions are very fast, even when dealing with large
training sets.

The training algorithm compares all features (or less if max_features is set) on all
samples at each node. Comparing all features on all samples at each node results in a
training complexity of O(n × m log (m)).

Gini Impurity or Entropy?
By default, the DecisionTreeClassifier class uses the Gini impurity measure, but
you can select the entropy impurity measure instead by setting the criterion
hyperparameter to "entropy". The concept of entropy originated in thermodynamics as
a measure of molecular disorder: entropy approaches zero when molecules are still and
well ordered. Entropy later spread to a wide variety of domains, including in Shannon’s
information theory, where it measures the average information content of a message, as
we saw in Chapter 4. Entropy is zero when all messages are identical. In machine
learning, entropy is frequently used as an impurity measure: a set’s entropy is zero
when it contains instances of only one class. Equation 6-3 shows the definition of the
entropy of the i  node. For example, the depth-2 left node in Figure 6-1 has an entropy
equal to –(49/54) log  (49/54) – (5/54) log  (5/54) ≈ 0.445.

Equation 6-3. Entropy

So, should you use Gini impurity or entropy? The truth is, most of the time it does not
make a big difference: they lead to similar trees. Gini impurity is slightly faster to
compute, so it is a good default. However, when they differ, Gini impurity tends to
isolate the most frequent class in its own branch of the tree, while entropy tends to
produce slightly more balanced trees. 

Regularization Hyperparameters
Decision trees make very few assumptions about the training data (as opposed to linear
models, which assume that the data is linear, for example). If left unconstrained, the
tree structure will adapt itself to the training data, fitting it very closely—indeed, most
likely overfitting it. Such a model is often called a nonparametric model, not because it
does not have any parameters (it often has a lot) but because the number of parameters
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is not determined prior to training, so the model structure is free to stick closely to the
data. In contrast, a parametric model, such as a linear model, has a predetermined
number of parameters, so its degree of freedom is limited, reducing the risk of
overfitting (but increasing the risk of underfitting).

To avoid overfitting the training data, you need to restrict the decision tree’s freedom
during training. As you know by now, this is called regularization. The regularization
hyperparameters depend on the algorithm used, but generally you can at least restrict
the maximum depth of the decision tree. In Scikit-Learn, this is controlled by the
max_depth hyperparameter. The default value is None, which means unlimited.
Reducing max_depth will regularize the model and thus reduce the risk of overfitting.

The DecisionTreeClassifier class has a few other parameters that similarly restrict
the shape of the decision tree:

max_features

Maximum number of features that are evaluated for splitting at each node

max_leaf_nodes

Maximum number of leaf nodes

min_samples_split

Minimum number of samples a node must have before it can be split

min_samples_leaf

Minimum number of samples a leaf node must have to be created

min_weight_fraction_leaf

Same as min_samples_leaf but expressed as a fraction of the total number of
weighted instances

Increasing min_* hyperparameters or reducing max_* hyperparameters will regularize
the model.



NOTE
Other algorithms work by first training the decision tree without restrictions, then pruning (deleting)
unnecessary nodes. A node whose children are all leaf nodes is considered unnecessary if the purity
improvement it provides is not statistically significant. Standard statistical tests, such as the χ  test (chi-
squared test), are used to estimate the probability that the improvement is purely the result of chance
(which is called the null hypothesis). If this probability, called the p-value, is higher than a given
threshold (typically 5%, controlled by a hyperparameter), then the node is considered unnecessary and
its children are deleted. The pruning continues until all unnecessary nodes have been pruned.

Let’s test regularization on the moons dataset, introduced in Chapter 5. We’ll train one
decision tree without regularization, and another with min_samples_leaf=5. Here’s
the code; Figure 6-3 shows the decision boundaries of each tree:

from sklearn.datasets import make_moons 
 
X_moons, y_moons = make_moons(n_samples=150, noise=0.2, random_state=42) 
 
tree_clf1 = DecisionTreeClassifier(random_state=42) 
tree_clf2 = DecisionTreeClassifier(min_samples_leaf=5, random_state=42) 
tree_clf1.fit(X_moons, y_moons) 
tree_clf2.fit(X_moons, y_moons)

Figure 6-3. Decision boundaries of an unregularized tree (left) and a regularized tree (right)

The unregularized model on the left is clearly overfitting, and the regularized model on
the right will probably generalize better. We can verify this by evaluating both trees on
a test set generated using a different random seed:

>>> X_moons_test, y_moons_test = make_moons(n_samples=1000, noise=0.2, 
...                                         random_state=43) 
... 
>>> tree_clf1.score(X_moons_test, y_moons_test) 
0.898 
>>> tree_clf2.score(X_moons_test, y_moons_test) 
0.92
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Indeed, the second tree has a better accuracy on the test set.

Regression
Decision trees are also capable of performing regression tasks. Let’s build a regression
tree using Scikit-Learn’s DecisionTreeRegressor class, training it on a noisy
quadratic dataset with max_depth=2:

import numpy as np 
from sklearn.tree import DecisionTreeRegressor 
 
np.random.seed(42) 
X_quad = np.random.rand(200, 1) - 0.5  # a single random input feature 
y_quad = X_quad ** 2 + 0.025 * np.random.randn(200, 1) 
 
tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42) 
tree_reg.fit(X_quad, y_quad)

The resulting tree is represented in Figure 6-4.

Figure 6-4. A decision tree for regression

This tree looks very similar to the classification tree you built earlier. The main
difference is that instead of predicting a class in each node, it predicts a value. For
example, suppose you want to make a prediction for a new instance with x  = 0.2. The
root node asks whether x  ≤ 0.197. Since it is not, the algorithm goes to the right child
node, which asks whether x  ≤ 0.772. Since it is, the algorithm goes to the left child
node. This is a leaf node, and it predicts value=0.111. This prediction is the average
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target value of the 110 training instances associated with this leaf node, and it results in
a mean squared error equal to 0.015 over these 110 instances.

This model’s predictions are represented on the left in Figure 6-5. If you set
max_depth=3, you get the predictions represented on the right. Notice how the
predicted value for each region is always the average target value of the instances in
that region. The algorithm splits each region in a way that makes most training
instances as close as possible to that predicted value.

Figure 6-5. Predictions of two decision tree regression models

The CART algorithm works as described earlier, except that instead of trying to split
the training set in a way that minimizes impurity, it now tries to split the training set in
a way that minimizes the MSE. Equation 6-4 shows the cost function that the algorithm
tries to minimize.

Equation 6-4. CART cost function for regression

Just like for classification tasks, decision trees are prone to overfitting when dealing
with regression tasks. Without any regularization (i.e., using the default
hyperparameters), you get the predictions on the left in Figure 6-6. These predictions
are obviously overfitting the training set very badly. Just setting min_samples_leaf=10
results in a much more reasonable model, represented on the right in Figure 6-6.



Figure 6-6. Predictions of an unregularized regression tree (left) and a regularized tree (right)

Sensitivity to Axis Orientation
Hopefully by now you are convinced that decision trees have a lot going for them: they
are relatively easy to understand and interpret, simple to use, versatile, and powerful.
However, they do have a few limitations. First, as you may have noticed, decision trees
love orthogonal decision boundaries (all splits are perpendicular to an axis), which
makes them sensitive to the data’s orientation. For example, Figure 6-7 shows a simple
linearly separable dataset: on the left, a decision tree can split it easily, while on the
right, after the dataset is rotated by 45°, the decision boundary looks unnecessarily
convoluted. Although both decision trees fit the training set perfectly, it is very likely
that the model on the right will not generalize well.

Figure 6-7. Sensitivity to training set rotation

One way to limit this problem is to scale the data, then apply a principal component
analysis transformation. We will look at PCA in detail in Chapter 8, but for now you
only need to know that it rotates the data in a way that reduces the correlation between
the features, which often (not always) makes things easier for trees.



Let’s create a small pipeline that scales the data and rotates it using PCA, then train a
DecisionTreeClassifier on that data. Figure 6-8 shows the decision boundaries of
that tree: as you can see, the rotation makes it possible to fit the dataset pretty well
using only one feature, z , which is a linear function of the original petal length and
width. Here’s the code:

from sklearn.decomposition import PCA 
from sklearn.pipeline import make_pipeline 
from sklearn.preprocessing import StandardScaler 
 
pca_pipeline = make_pipeline(StandardScaler(), PCA()) 
X_iris_rotated = pca_pipeline.fit_transform(X_iris) 
tree_clf_pca = DecisionTreeClassifier(max_depth=2, random_state=42) 
tree_clf_pca.fit(X_iris_rotated, y_iris)

Figure 6-8. A tree’s decision boundaries on the scaled and PCA-rotated iris dataset

Decision Trees Have a High Variance
More generally, the main issue with decision trees is that they have quite a high
variance: small changes to the hyperparameters or to the data may produce very
different models. In fact, since the training algorithm used by Scikit-Learn is stochastic
—it randomly selects the set of features to evaluate at each node—even retraining the
same decision tree on the exact same data may produce a very different model, such as
the one represented in Figure 6-9 (unless you set the random_state hyperparameter).
As you can see, it looks very different from the previous decision tree (Figure 6-2).
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Figure 6-9. Retraining the same model on the same data may produce a very different model

Luckily, by averaging predictions over many trees, it’s possible to reduce variance
significantly. Such an ensemble of trees is called a random forest, and it’s one of the
most powerful types of models available today, as you will see in the next chapter.

Exercises
1. What is the approximate depth of a decision tree trained (without restrictions) on a

training set with one million instances?

2. Is a node’s Gini impurity generally lower or higher than its parent’s? Is it generally
lower/higher, or always lower/higher?

3. If a decision tree is overfitting the training set, is it a good idea to try decreasing
max_depth?

4. If a decision tree is underfitting the training set, is it a good idea to try scaling the
input features?

5. If it takes one hour to train a decision tree on a training set containing one million
instances, roughly how much time will it take to train another decision tree on a
training set containing ten million instances? Hint: consider the CART algorithm’s
computational complexity.

6. If it takes one hour to train a decision tree on a given training set, roughly how
much time will it take if you double the number of features?

7. Train and fine-tune a decision tree for the moons dataset by following these steps:



a. Use make_moons(n_samples=10000, noise=0.4) to generate a moons
dataset.

b. Use train_test_split() to split the dataset into a training set and a test set.

c. Use grid search with cross-validation (with the help of the GridSearchCV
class) to find good hyperparameter values for a DecisionTreeClassifier.
Hint: try various values for max_leaf_nodes.

d. Train it on the full training set using these hyperparameters, and measure
your model’s performance on the test set. You should get roughly 85% to
87% accuracy.

8. Grow a forest by following these steps:

a. Continuing the previous exercise, generate 1,000 subsets of the training set,
each containing 100 instances selected randomly. Hint: you can use Scikit-
Learn’s ShuffleSplit class for this.

b. Train one decision tree on each subset, using the best hyperparameter values
found in the previous exercise. Evaluate these 1,000 decision trees on the test
set. Since they were trained on smaller sets, these decision trees will likely
perform worse than the first decision tree, achieving only about 80%
accuracy.

c. Now comes the magic. For each test set instance, generate the predictions of
the 1,000 decision trees, and keep only the most frequent prediction (you can
use SciPy’s mode() function for this). This approach gives you majority-vote
predictions over the test set.

d. Evaluate these predictions on the test set: you should obtain a slightly higher
accuracy than your first model (about 0.5 to 1.5% higher). Congratulations,
you have trained a random forest classifier!

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

1  P is the set of problems that can be solved in polynomial time (i.e., a polynomial of the dataset size). NP is the
set of problems whose solutions can be verified in polynomial time. An NP-hard problem is a problem that can
be reduced to a known NP-hard problem in polynomial time. An NP-complete problem is both NP and NP-
hard. A major open mathematical question is whether or not P = NP. If P ≠ NP (which seems likely), then no
polynomial algorithm will ever be found for any NP-complete problem (except perhaps one day on a quantum
computer).

2  See Sebastian Raschka’s interesting analysis for more details.



Chapter 7. Ensemble Learning and
Random Forests

Suppose you pose a complex question to thousands of random people, then aggregate
their answers. In many cases you will find that this aggregated answer is better than an
expert’s answer. This is called the wisdom of the crowd. Similarly, if you aggregate the
predictions of a group of predictors (such as classifiers or regressors), you will often get
better predictions than with the best individual predictor. A group of predictors is called
an ensemble; thus, this technique is called ensemble learning, and an ensemble learning
algorithm is called an ensemble method.

As an example of an ensemble method, you can train a group of decision tree classifiers,
each on a different random subset of the training set. You can then obtain the predictions
of all the individual trees, and the class that gets the most votes is the ensemble’s
prediction (see the last exercise in Chapter 6). Such an ensemble of decision trees is
called a random forest, and despite its simplicity, this is one of the most powerful
machine learning algorithms available today.

As discussed in Chapter 2, you will often use ensemble methods near the end of a
project, once you have already built a few good predictors, to combine them into an
even better predictor. In fact, the winning solutions in machine learning competitions
often involve several ensemble methods—most famously in the Netflix Prize
competition.

In this chapter we will examine the most popular ensemble methods, including voting
classifiers, bagging and pasting ensembles, random forests, and boosting, and stacking
ensembles.

Voting Classifiers
Suppose you have trained a few classifiers, each one achieving about 80% accuracy.
You may have a logistic regression classifier, an SVM classifier, a random forest
classifier, a k-nearest neighbors classifier, and perhaps a few more (see Figure 7-1).



Figure 7-1. Training diverse classifiers

A very simple way to create an even better classifier is to aggregate the predictions of
each classifier: the class that gets the most votes is the ensemble’s prediction. This
majority-vote classifier is called a hard voting classifier (see Figure 7-2).

Figure 7-2. Hard voting classifier predictions

Somewhat surprisingly, this voting classifier often achieves a higher accuracy than the
best classifier in the ensemble. In fact, even if each classifier is a weak learner (meaning
it does only slightly better than random guessing), the ensemble can still be a strong
learner (achieving high accuracy), provided there are a sufficient number of weak
learners in the ensemble and they are sufficiently diverse.



How is this possible? The following analogy can help shed some light on this mystery.
Suppose you have a slightly biased coin that has a 51% chance of coming up heads and
49% chance of coming up tails. If you toss it 1,000 times, you will generally get more
or less 510 heads and 490 tails, and hence a majority of heads. If you do the math, you
will find that the probability of obtaining a majority of heads after 1,000 tosses is close
to 75%. The more you toss the coin, the higher the probability (e.g., with 10,000 tosses,
the probability climbs over 97%). This is due to the law of large numbers: as you keep
tossing the coin, the ratio of heads gets closer and closer to the probability of heads
(51%). Figure 7-3 shows 10 series of biased coin tosses. You can see that as the number
of tosses increases, the ratio of heads approaches 51%. Eventually all 10 series end up
so close to 51% that they are consistently above 50%.

Figure 7-3. The law of large numbers

Similarly, suppose you build an ensemble containing 1,000 classifiers that are
individually correct only 51% of the time (barely better than random guessing). If you
predict the majority voted class, you can hope for up to 75% accuracy! However, this is
only true if all classifiers are perfectly independent, making uncorrelated errors, which
is clearly not the case because they are trained on the same data. They are likely to make
the same types of errors, so there will be many majority votes for the wrong class,
reducing the ensemble’s accuracy.

TIP
Ensemble methods work best when the predictors are as independent from one another as possible. One
way to get diverse classifiers is to train them using very different algorithms. This increases the chance
that they will make very different types of errors, improving the ensemble’s accuracy.

Scikit-Learn provides a VotingClassifier class that’s quite easy to use: just give it a
list of name/predictor pairs, and use it like a normal classifier. Let’s try it on the moons



dataset (introduced in Chapter 5). We will load and split the moons dataset into a
training set and a test set, then we’ll create and train a voting classifier composed of
three diverse classifiers:

from sklearn.datasets import make_moons 
from sklearn.ensemble import RandomForestClassifier, VotingClassifier 
from sklearn.linear_model import LogisticRegression 
from sklearn.model_selection import train_test_split 
from sklearn.svm import SVC 
 
X, y = make_moons(n_samples=500, noise=0.30, random_state=42) 
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) 
 
voting_clf = VotingClassifier( 
    estimators=[ 
        ('lr', LogisticRegression(random_state=42)), 
        ('rf', RandomForestClassifier(random_state=42)), 
        ('svc', SVC(random_state=42)) 
    ] 
) 
voting_clf.fit(X_train, y_train)

When you fit a VotingClassifier, it clones every estimator and fits the clones. The
original estimators are available via the estimators attribute, while the fitted clones are
available via the estimators_ attribute. If you prefer a dict rather than a list, you can
use named_estimators or named_estimators_ instead. To begin, let’s look at each
fitted classifier’s accuracy on the test set:

>>> for name, clf in voting_clf.named_estimators_.items(): 
...     print(name, "=", clf.score(X_test, y_test)) 
... 
lr = 0.864 
rf = 0.896 
svc = 0.896

When you call the voting classifier’s predict() method, it performs hard voting. For
example, the voting classifier predicts class 1 for the first instance of the test set,
because two out of three classifiers predict that class:

>>> voting_clf.predict(X_test[:1]) 
array([1]) 
>>> [clf.predict(X_test[:1]) for clf in voting_clf.estimators_] 
[array([1]), array([1]), array([0])]

Now let’s look at the performance of the voting classifier on the test set:

>>> voting_clf.score(X_test, y_test) 
0.912



There you have it! The voting classifier outperforms all the individual classifiers.

If all classifiers are able to estimate class probabilities (i.e., if they all have a
predict_proba() method), then you can tell Scikit-Learn to predict the class with the
highest class probability, averaged over all the individual classifiers. This is called soft
voting. It often achieves higher performance than hard voting because it gives more
weight to highly confident votes. All you need to do is set the voting classifier’s voting
hyperparameter to "soft", and ensure that all classifiers can estimate class
probabilities. This is not the case for the SVC class by default, so you need to set its
probability hyperparameter to True (this will make the SVC class use cross-validation
to estimate class probabilities, slowing down training, and it will add a
predict_proba() method). Let’s try that:

>>> voting_clf.voting = "soft" 
>>> voting_clf.named_estimators["svc"].probability = True 
>>> voting_clf.fit(X_train, y_train) 
>>> voting_clf.score(X_test, y_test) 
0.92

We reach 92% accuracy simply by using soft voting—not bad!

Bagging and Pasting
One way to get a diverse set of classifiers is to use very different training algorithms, as
just discussed. Another approach is to use the same training algorithm for every
predictor but train them on different random subsets of the training set. When sampling
is performed with replacement,  this method is called bagging  (short for bootstrap
aggregating ). When sampling is performed without replacement, it is called pasting. 

In other words, both bagging and pasting allow training instances to be sampled several
times across multiple predictors, but only bagging allows training instances to be
sampled several times for the same predictor. This sampling and training process is
represented in Figure 7-4.

1 2
3 4



Figure 7-4. Bagging and pasting involve training several predictors on different random samples of the training set

Once all predictors are trained, the ensemble can make a prediction for a new instance
by simply aggregating the predictions of all predictors. The aggregation function is
typically the statistical mode for classification (i.e., the most frequent prediction, just
like with a hard voting classifier), or the average for regression. Each individual
predictor has a higher bias than if it were trained on the original training set, but
aggregation reduces both bias and variance.  Generally, the net result is that the
ensemble has a similar bias but a lower variance than a single predictor trained on the
original training set.

As you can see in Figure 7-4, predictors can all be trained in parallel, via different CPU
cores or even different servers. Similarly, predictions can be made in parallel. This is
one of the reasons bagging and pasting are such popular methods: they scale very well.

Bagging and Pasting in Scikit-Learn
Scikit-Learn offers a simple API for both bagging and pasting: BaggingClassifier
class (or BaggingRegressor for regression). The following code trains an ensemble of
500 decision tree classifiers:  each is trained on 100 training instances randomly
sampled from the training set with replacement (this is an example of bagging, but if
you want to use pasting instead, just set bootstrap=False). The n_jobs parameter tells
Scikit-Learn the number of CPU cores to use for training and predictions, and –1 tells
Scikit-Learn to use all available cores:
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from sklearn.ensemble import BaggingClassifier 
from sklearn.tree import DecisionTreeClassifier 
 
bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=500, 
                            max_samples=100, n_jobs=-1, random_state=42) 
bag_clf.fit(X_train, y_train)

NOTE
A BaggingClassifier automatically performs soft voting instead of hard voting if the base classifier
can estimate class probabilities (i.e., if it has a predict_proba() method), which is the case with
decision tree classifiers.

Figure 7-5 compares the decision boundary of a single decision tree with the decision
boundary of a bagging ensemble of 500 trees (from the preceding code), both trained on
the moons dataset. As you can see, the ensemble’s predictions will likely generalize
much better than the single decision tree’s predictions: the ensemble has a comparable
bias but a smaller variance (it makes roughly the same number of errors on the training
set, but the decision boundary is less irregular).

Bagging introduces a bit more diversity in the subsets that each predictor is trained on,
so bagging ends up with a slightly higher bias than pasting; but the extra diversity also
means that the predictors end up being less correlated, so the ensemble’s variance is
reduced. Overall, bagging often results in better models, which explains why it’s
generally preferred. But if you have spare time and CPU power, you can use cross-
validation to evaluate both bagging and pasting and select the one that works best.

Figure 7-5. A single decision tree (left) versus a bagging ensemble of 500 trees (right)

Out-of-Bag Evaluation
With bagging, some training instances may be sampled several times for any given
predictor, while others may not be sampled at all. By default a BaggingClassifier



samples m training instances with replacement (bootstrap=True), where m is the size
of the training set. With this process, it can be shown mathematically that only about
63% of the training instances are sampled on average for each predictor.  The remaining
37% of the training instances that are not sampled are called out-of-bag (OOB)
instances. Note that they are not the same 37% for all predictors.

A bagging ensemble can be evaluated using OOB instances, without the need for a
separate validation set: indeed, if there are enough estimators, then each instance in the
training set will likely be an OOB instance of several estimators, so these estimators can
be used to make a fair ensemble prediction for that instance. Once you have a prediction
for each instance, you can compute the ensemble’s prediction accuracy (or any other
metric).

In Scikit-Learn, you can set oob_score=True when creating a BaggingClassifier to
request an automatic OOB evaluation after training. The following code demonstrates
this. The resulting evaluation score is available in the oob_score_ attribute:

>>> bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=500, 
...                             oob_score=True, n_jobs=-1, random_state=42) 
... 
>>> bag_clf.fit(X_train, y_train) 
>>> bag_clf.oob_score_ 
0.896

According to this OOB evaluation, this BaggingClassifier is likely to achieve about
89.6% accuracy on the test set. Let’s verify this:

>>> from sklearn.metrics import accuracy_score 
>>> y_pred = bag_clf.predict(X_test) 
>>> accuracy_score(y_test, y_pred) 
0.92

We get 92% accuracy on the test. The OOB evaluation was a bit too pessimistic, just
over 2% too low.

The OOB decision function for each training instance is also available through the
oob_decision_function_ attribute. Since the base estimator has a predict_proba()
method, the decision function returns the class probabilities for each training instance.
For example, the OOB evaluation estimates that the first training instance has a 67.6%
probability of belonging to the positive class and a 32.4% probability of belonging to
the negative class:

>>> bag_clf.oob_decision_function_[:3]  # probas for the first 3 instances 
array([[0.32352941, 0.67647059], 
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       [0.3375    , 0.6625    ], 
       [1.        , 0.        ]])

Random Patches and Random Subspaces
The BaggingClassifier class supports sampling the features as well. Sampling is
controlled by two hyperparameters: max_features and bootstrap_features. They
work the same way as max_samples and bootstrap, but for feature sampling instead of
instance sampling. Thus, each predictor will be trained on a random subset of the input
features.

This technique is particularly useful when you are dealing with high-dimensional inputs
(such as images), as it can considerably speed up training. Sampling both training
instances and features is called the random patches method.  Keeping all training
instances (by setting bootstrap=False and max_samples=1.0) but sampling features
(by setting bootstrap_features to True and/or max_features to a value smaller than
1.0) is called the random subspaces method. 

Sampling features results in even more predictor diversity, trading a bit more bias for a
lower variance.

Random Forests
As we have discussed, a random forest  is an ensemble of decision trees, generally
trained via the bagging method (or sometimes pasting), typically with max_samples set
to the size of the training set. Instead of building a BaggingClassifier and passing it a
DecisionTreeClassifier, you can use the RandomForestClassifier class, which is
more convenient and optimized for decision trees  (similarly, there is a
RandomForestRegressor class for regression tasks). The following code trains a
random forest classifier with 500 trees, each limited to maximum 16 leaf nodes, using
all available CPU cores:

from sklearn.ensemble import RandomForestClassifier 
 
rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, 
                                 n_jobs=-1, random_state=42) 
rnd_clf.fit(X_train, y_train) 
 
y_pred_rf = rnd_clf.predict(X_test)

With a few exceptions, a RandomForestClassifier has all the hyperparameters of a
DecisionTreeClassifier (to control how trees are grown), plus all the
hyperparameters of a BaggingClassifier to control the ensemble itself.
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The random forest algorithm introduces extra randomness when growing trees; instead
of searching for the very best feature when splitting a node (see Chapter 6), it searches
for the best feature among a random subset of features. By default, it samples 
features (where n is the total number of features). The algorithm results in greater tree
diversity, which (again) trades a higher bias for a lower variance, generally yielding an
overall better model. So, the following BaggingClassifier is equivalent to the
previous RandomForestClassifier:

bag_clf = BaggingClassifier( 
    DecisionTreeClassifier(max_features="sqrt", max_leaf_nodes=16), 
    n_estimators=500, n_jobs=-1, random_state=42)

Extra-Trees
When you are growing a tree in a random forest, at each node only a random subset of
the features is considered for splitting (as discussed earlier). It is possible to make trees
even more random by also using random thresholds for each feature rather than
searching for the best possible thresholds (like regular decision trees do). For this,
simply set splitter="random" when creating a DecisionTreeClassifier.

A forest of such extremely random trees is called an extremely randomized trees  (or
extra-trees for short) ensemble. Once again, this technique trades more bias for a lower
variance. It also makes extra-trees classifiers much faster to train than regular random
forests, because finding the best possible threshold for each feature at every node is one
of the most time-consuming tasks of growing a tree.

You can create an extra-trees classifier using Scikit-Learn’s ExtraTreesClassifier
class. Its API is identical to the RandomForestClassifier class, except bootstrap
defaults to False. Similarly, the ExtraTreesRegressor class has the same API as the
RandomForestRegressor class, except bootstrap defaults to False.

TIP
It is hard to tell in advance whether a RandomForestClassifier will perform better or worse than an
ExtraTreesClassifier. Generally, the only way to know is to try both and compare them using cross-
validation.

Feature Importance
Yet another great quality of random forests is that they make it easy to measure the
relative importance of each feature. Scikit-Learn measures a feature’s importance by
looking at how much the tree nodes that use that feature reduce impurity on average,
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across all trees in the forest. More precisely, it is a weighted average, where each node’s
weight is equal to the number of training samples that are associated with it (see
Chapter 6).

Scikit-Learn computes this score automatically for each feature after training, then it
scales the results so that the sum of all importances is equal to 1. You can access the
result using the feature_importances_ variable. For example, the following code
trains a RandomForestClassifier on the iris dataset (introduced in Chapter 4) and
outputs each feature’s importance. It seems that the most important features are the petal
length (44%) and width (42%), while sepal length and width are rather unimportant in
comparison (11% and 2%, respectively):

>>> from sklearn.datasets import load_iris 
>>> iris = load_iris(as_frame=True) 
>>> rnd_clf = RandomForestClassifier(n_estimators=500, random_state=42) 
>>> rnd_clf.fit(iris.data, iris.target) 
>>> for score, name in zip(rnd_clf.feature_importances_, iris.data.columns): 
...     print(round(score, 2), name) 
... 
0.11 sepal length (cm) 
0.02 sepal width (cm) 
0.44 petal length (cm) 
0.42 petal width (cm)

Similarly, if you train a random forest classifier on the MNIST dataset (introduced in
Chapter 3) and plot each pixel’s importance, you get the image represented in Figure 7-
6.

Figure 7-6. MNIST pixel importance (according to a random forest classifier)



Random forests are very handy to get a quick understanding of what features actually
matter, in particular if you need to perform feature selection.

Boosting
Boosting (originally called hypothesis boosting) refers to any ensemble method that can
combine several weak learners into a strong learner. The general idea of most boosting
methods is to train predictors sequentially, each trying to correct its predecessor. There
are many boosting methods available, but by far the most popular are AdaBoost  (short
for adaptive boosting) and gradient boosting. Let’s start with AdaBoost.

AdaBoost
One way for a new predictor to correct its predecessor is to pay a bit more attention to
the training instances that the predecessor underfit. This results in new predictors
focusing more and more on the hard cases. This is the technique used by AdaBoost.

For example, when training an AdaBoost classifier, the algorithm first trains a base
classifier (such as a decision tree) and uses it to make predictions on the training set.
The algorithm then increases the relative weight of misclassified training instances.
Then it trains a second classifier, using the updated weights, and again makes
predictions on the training set, updates the instance weights, and so on (see Figure 7-7).

Figure 7-8 shows the decision boundaries of five consecutive predictors on the moons
dataset (in this example, each predictor is a highly regularized SVM classifier with an
RBF kernel).  The first classifier gets many instances wrong, so their weights get
boosted. The second classifier therefore does a better job on these instances, and so on.
The plot on the right represents the same sequence of predictors, except that the learning
rate is halved (i.e., the misclassified instance weights are boosted much less at every
iteration). As you can see, this sequential learning technique has some similarities with
gradient descent, except that instead of tweaking a single predictor’s parameters to
minimize a cost function, AdaBoost adds predictors to the ensemble, gradually making
it better.
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Figure 7-7. AdaBoost sequential training with instance weight updates

Once all predictors are trained, the ensemble makes predictions very much like bagging
or pasting, except that predictors have different weights depending on their overall
accuracy on the weighted training set.

Figure 7-8. Decision boundaries of consecutive predictors

WARNING
There is one important drawback to this sequential learning technique: training cannot be parallelized
since each predictor can only be trained after the previous predictor has been trained and evaluated. As a
result, it does not scale as well as bagging or pasting.



Let’s take a closer look at the AdaBoost algorithm. Each instance weight w  is initially
set to 1/m. A first predictor is trained, and its weighted error rate r  is computed on the
training set; see Equation 7-1.

Equation 7-1. Weighted error rate of the j  predictor

The predictor’s weight α  is then computed using Equation 7-2, where η is the learning
rate hyperparameter (defaults to 1).  The more accurate the predictor is, the higher its
weight will be. If it is just guessing randomly, then its weight will be close to zero.
However, if it is most often wrong (i.e., less accurate than random guessing), then its
weight will be negative.

Equation 7-2. Predictor weight

Next, the AdaBoost algorithm updates the instance weights, using Equation 7-3, which
boosts the weights of the misclassified instances.

Equation 7-3. Weight update rule

Then all the instance weights are normalized (i.e., divided by ).

Finally, a new predictor is trained using the updated weights, and the whole process is
repeated: the new predictor’s weight is computed, the instance weights are updated, then
another predictor is trained, and so on. The algorithm stops when the desired number of
predictors is reached, or when a perfect predictor is found.

To make predictions, AdaBoost simply computes the predictions of all the predictors
and weighs them using the predictor weights α . The predicted class is the one that
receives the majority of weighted votes (see Equation 7-4).

Equation 7-4. AdaBoost predictions

(i)

1

th

j
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Scikit-Learn uses a multiclass version of AdaBoost called SAMME  (which stands for
Stagewise Additive Modeling using a Multiclass Exponential loss function). When there
are just two classes, SAMME is equivalent to AdaBoost. If the predictors can estimate
class probabilities (i.e., if they have a predict_proba() method), Scikit-Learn can use
a variant of SAMME called SAMME.R (the R stands for “Real”), which relies on class
probabilities rather than predictions and generally performs better.

The following code trains an AdaBoost classifier based on 30 decision stumps using
Scikit-Learn’s AdaBoostClassifier class (as you might expect, there is also an
AdaBoostRegressor class). A decision stump is a decision tree with max_depth=1—in
other words, a tree composed of a single decision node plus two leaf nodes. This is the
default base estimator for the AdaBoostClassifier class:

from sklearn.ensemble import AdaBoostClassifier 
 
ada_clf = AdaBoostClassifier( 
    DecisionTreeClassifier(max_depth=1), n_estimators=30, 
    learning_rate=0.5, random_state=42) 
ada_clf.fit(X_train, y_train)

TIP
If your AdaBoost ensemble is overfitting the training set, you can try reducing the number of estimators
or more strongly regularizing the base estimator.

Gradient Boosting
Another very popular boosting algorithm is gradient boosting.  Just like AdaBoost,
gradient boosting works by sequentially adding predictors to an ensemble, each one
correcting its predecessor. However, instead of tweaking the instance weights at every
iteration like AdaBoost does, this method tries to fit the new predictor to the residual
errors made by the previous predictor.

Let’s go through a simple regression example, using decision trees as the base
predictors; this is called gradient tree boosting, or gradient boosted regression trees
(GBRT). First, let’s generate a noisy quadratic dataset and fit a
DecisionTreeRegressor to it:
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import numpy as np 
from sklearn.tree import DecisionTreeRegressor 
 
np.random.seed(42) 
X = np.random.rand(100, 1) - 0.5 
y = 3 * X[:, 0] ** 2 + 0.05 * np.random.randn(100)  # y = 3x² + Gaussian noise 
 
tree_reg1 = DecisionTreeRegressor(max_depth=2, random_state=42) 
tree_reg1.fit(X, y)

Next, we’ll train a second DecisionTreeRegressor on the residual errors made by the
first predictor:

y2 = y - tree_reg1.predict(X) 
tree_reg2 = DecisionTreeRegressor(max_depth=2, random_state=43) 
tree_reg2.fit(X, y2)

And then we’ll train a third regressor on the residual errors made by the second
predictor:

y3 = y2 - tree_reg2.predict(X) 
tree_reg3 = DecisionTreeRegressor(max_depth=2, random_state=44) 
tree_reg3.fit(X, y3)

Now we have an ensemble containing three trees. It can make predictions on a new
instance simply by adding up the predictions of all the trees:

>>> X_new = np.array([[-0.4], [0.], [0.5]]) 
>>> sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3)) 
array([0.49484029, 0.04021166, 0.75026781])

Figure 7-9 represents the predictions of these three trees in the left column, and the
ensemble’s predictions in the right column. In the first row, the ensemble has just one
tree, so its predictions are exactly the same as the first tree’s predictions. In the second
row, a new tree is trained on the residual errors of the first tree. On the right you can see
that the ensemble’s predictions are equal to the sum of the predictions of the first two
trees. Similarly, in the third row another tree is trained on the residual errors of the
second tree. You can see that the ensemble’s predictions gradually get better as trees are
added to the ensemble.

You can use Scikit-Learn’s GradientBoostingRegressor class to train GBRT
ensembles more easily (there’s also a GradientBoostingClassifier class for
classification). Much like the RandomForestRegressor class, it has hyperparameters to
control the growth of decision trees (e.g., max_depth, min_samples_leaf), as well as



hyperparameters to control the ensemble training, such as the number of trees
(n_estimators). The following code creates the same ensemble as the previous one:

from sklearn.ensemble import GradientBoostingRegressor 
 
gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, 
                                 learning_rate=1.0, random_state=42) 
gbrt.fit(X, y)

Figure 7-9. In this depiction of gradient boosting, the first predictor (top left) is trained normally, then each
consecutive predictor (middle left and lower left) is trained on the previous predictor’s residuals; the right column

shows the resulting ensemble’s predictions

The learning_rate hyperparameter scales the contribution of each tree. If you set it to
a low value, such as 0.05, you will need more trees in the ensemble to fit the training
set, but the predictions will usually generalize better. This is a regularization technique
called shrinkage. Figure 7-10 shows two GBRT ensembles trained with different
hyperparameters: the one on the left does not have enough trees to fit the training set,



while the one on the right has about the right amount. If we added more trees, the GBRT
would start to overfit the training set.

Figure 7-10. GBRT ensembles with not enough predictors (left) and just enough (right)

To find the optimal number of trees, you could perform cross-validation using
GridSearchCV or RandomizedSearchCV, as usual, but there’s a simpler way: if you set
the n_iter_no_change hyperparameter to an integer value, say 10, then the
GradientBoostingRegressor will automatically stop adding more trees during
training if it sees that the last 10 trees didn’t help. This is simply early stopping
(introduced in Chapter 4), but with a little bit of patience: it tolerates having no progress
for a few iterations before it stops. Let’s train the ensemble using early stopping:

gbrt_best = GradientBoostingRegressor( 
    max_depth=2, learning_rate=0.05, n_estimators=500, 
    n_iter_no_change=10, random_state=42) 
gbrt_best.fit(X, y)

If you set n_iter_no_change too low, training may stop too early and the model will
underfit. But if you set it too high, it will overfit instead. We also set a fairly small
learning rate and a high number of estimators, but the actual number of estimators in the
trained ensemble is much lower, thanks to early stopping:

>>> gbrt_best.n_estimators_ 
92

When n_iter_no_change is set, the fit() method automatically splits the training set
into a smaller training set and a validation set: this allows it to evaluate the model’s
performance each time it adds a new tree. The size of the validation set is controlled by
the validation_fraction hyperparameter, which is 10% by default. The tol
hyperparameter determines the maximum performance improvement that still counts as
negligible. It defaults to 0.0001.



The GradientBoostingRegressor class also supports a subsample hyperparameter,
which specifies the fraction of training instances to be used for training each tree. For
example, if subsample=0.25, then each tree is trained on 25% of the training instances,
selected randomly. As you can probably guess by now, this technique trades a higher
bias for a lower variance. It also speeds up training considerably. This is called
stochastic gradient boosting.

Histogram-Based Gradient Boosting
Scikit-Learn also provides another GBRT implementation, optimized for large datasets:
histogram-based gradient boosting (HGB). It works by binning the input features,
replacing them with integers. The number of bins is controlled by the max_bins
hyperparameter, which defaults to 255 and cannot be set any higher than this. Binning
can greatly reduce the number of possible thresholds that the training algorithm needs to
evaluate. Moreover, working with integers makes it possible to use faster and more
memory-efficient data structures. And the way the bins are built removes the need for
sorting the features when training each tree.

As a result, this implementation has a computational complexity of O(b×m) instead of
O(n×m×log(m)), where b is the number of bins, m is the number of training instances,
and n is the number of features. In practice, this means that HGB can train hundreds of
times faster than regular GBRT on large datasets. However, binning causes a precision
loss, which acts as a regularizer: depending on the dataset, this may help reduce
overfitting, or it may cause underfitting.

Scikit-Learn provides two classes for HGB: HistGradientBoostingRegressor and
HistGradientBoostingClassifier. They’re similar to
GradientBoostingRegressor and GradientBoostingClassifier, with a few notable
differences:

Early stopping is automatically activated if the number of instances is greater than
10,000. You can turn early stopping always on or always off by setting the
early_stopping hyperparameter to True or False.

Subsampling is not supported.

n_estimators is renamed to max_iter.

The only decision tree hyperparameters that can be tweaked are max_leaf_nodes,
min_samples_leaf, and max_depth.

The HGB classes also have two nice features: they support both categorical features and
missing values. This simplifies preprocessing quite a bit. However, the categorical



features must be represented as integers ranging from 0 to a number lower than
max_bins. You can use an OrdinalEncoder for this. For example, here’s how to build
and train a complete pipeline for the California housing dataset introduced in Chapter 2:

from sklearn.pipeline import make_pipeline 
from sklearn.compose import make_column_transformer 
from sklearn.ensemble import HistGradientBoostingRegressor 
from sklearn.preprocessing import OrdinalEncoder 
 
hgb_reg = make_pipeline( 
    make_column_transformer((OrdinalEncoder(), ["ocean_proximity"]), 
                            remainder="passthrough"), 
    HistGradientBoostingRegressor(categorical_features=[0], random_state=42) 
) 
hgb_reg.fit(housing, housing_labels)

The whole pipeline is just as short as the imports! No need for an imputer, scaler, or a
one-hot encoder, so it’s really convenient. Note that categorical_features must be
set to the categorical column indices (or a Boolean array). Without any hyperparameter
tuning, this model yields an RMSE of about 47,600, which is not too bad.

TIP
Several other optimized implementations of gradient boosting are available in the Python ML
ecosystem: in particular, XGBoost, CatBoost, and LightGBM. These libraries have been around for
several years. They are all specialized for gradient boosting, their APIs are very similar to Scikit-
Learn’s, and they provide many additional features, including GPU acceleration; you should definitely
check them out! Moreover, the TensorFlow Random Forests library provides optimized implementations
of a variety of random forest algorithms, including plain random forests, extra-trees, GBRT, and several
more.

Stacking
The last ensemble method we will discuss in this chapter is called stacking (short for
stacked generalization).  It is based on a simple idea: instead of using trivial functions
(such as hard voting) to aggregate the predictions of all predictors in an ensemble, why
don’t we train a model to perform this aggregation? Figure 7-11 shows such an
ensemble performing a regression task on a new instance. Each of the bottom three
predictors predicts a different value (3.1, 2.7, and 2.9), and then the final predictor
(called a blender, or a meta learner) takes these predictions as inputs and makes the
final prediction (3.0).
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Figure 7-11. Aggregating predictions using a blending predictor

To train the blender, you first need to build the blending training set. You can use
cross_val_predict() on every predictor in the ensemble to get out-of-sample
predictions for each instance in the original training set (Figure 7-12), and use these can
be used as the input features to train the blender; and the targets can simply be copied
from the original training set. Note that regardless of the number of features in the
original training set (just one in this example), the blending training set will contain one
input feature per predictor (three in this example). Once the blender is trained, the base
predictors are retrained one last time on the full original training set.



Figure 7-12. Training the blender in a stacking ensemble

It is actually possible to train several different blenders this way (e.g., one using linear
regression, another using random forest regression) to get a whole layer of blenders, and
then add another blender on top of that to produce the final prediction, as shown in
Figure 7-13. You may be able to squeeze out a few more drops of performance by doing
this, but it will cost you in both training time and system complexity.



Figure 7-13. Predictions in a multilayer stacking ensemble

Scikit-Learn provides two classes for stacking ensembles: StackingClassifier and
StackingRegressor. For example, we can replace the VotingClassifier we used at
the beginning of this chapter on the moons dataset with a StackingClassifier:

from sklearn.ensemble import StackingClassifier 
 
stacking_clf = StackingClassifier( 
    estimators=[ 
        ('lr', LogisticRegression(random_state=42)), 
        ('rf', RandomForestClassifier(random_state=42)), 
        ('svc', SVC(probability=True, random_state=42)) 
    ], 
    final_estimator=RandomForestClassifier(random_state=43), 
    cv=5  # number of cross-validation folds 
) 
stacking_clf.fit(X_train, y_train)

For each predictor, the stacking classifier will call predict_proba() if available; if not
it will fall back to decision_function() or, as a last resort, call predict(). If you
don’t provide a final estimator, StackingClassifier will use LogisticRegression
and StackingRegressor will use RidgeCV.



If you evaluate this stacking model on the test set, you will find 92.8% accuracy, which
is a bit better than the voting classifier using soft voting, which got 92%.

In conclusion, ensemble methods are versatile, powerful, and fairly simple to use.
Random forests, AdaBoost, and GBRT are among the first models you should test for
most machine learning tasks, and they particularly shine with heterogeneous tabular
data. Moreover, as they require very little preprocessing, they’re great for getting a
prototype up and running quickly. Lastly, ensemble methods like voting classifiers and
stacking classifiers can help push your system’s performance to its limits.

Exercises
1. If you have trained five different models on the exact same training data, and they

all achieve 95% precision, is there any chance that you can combine these models
to get better results? If so, how? If not, why?

2. What is the difference between hard and soft voting classifiers?

3. Is it possible to speed up training of a bagging ensemble by distributing it across
multiple servers? What about pasting ensembles, boosting ensembles, random
forests, or stacking ensembles?

4. What is the benefit of out-of-bag evaluation?

5. What makes extra-trees ensembles more random than regular random forests? How
can this extra randomness help? Are extra-trees classifiers slower or faster than
regular random forests?

6. If your AdaBoost ensemble underfits the training data, which hyperparameters
should you tweak, and how?

7. If your gradient boosting ensemble overfits the training set, should you increase or
decrease the learning rate?

8. Load the MNIST dataset (introduced in Chapter 3), and split it into a training set, a
validation set, and a test set (e.g., use 50,000 instances for training, 10,000 for
validation, and 10,000 for testing). Then train various classifiers, such as a random
forest classifier, an extra-trees classifier, and an SVM classifier. Next, try to
combine them into an ensemble that outperforms each individual classifier on the
validation set, using soft or hard voting. Once you have found one, try it on the test
set. How much better does it perform compared to the individual classifiers?



9. Run the individual classifiers from the previous exercise to make predictions on the
validation set, and create a new training set with the resulting predictions: each
training instance is a vector containing the set of predictions from all your
classifiers for an image, and the target is the image’s class. Train a classifier on this
new training set. Congratulations—you have just trained a blender, and together
with the classifiers it forms a stacking ensemble! Now evaluate the ensemble on
the test set. For each image in the test set, make predictions with all your
classifiers, then feed the predictions to the blender to get the ensemble’s
predictions. How does it compare to the voting classifier you trained earlier? Now
try again using a StackingClassifier instead. Do you get better performance? If
so, why?

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.
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