

CosC 290: Discrete Structures

Relations, Functions, Countability

01/27/2024

Prof. Forrest

Warm up ↗ Goals

Warm up

1. Talk to your neighbor about the highlight of your snow day. *

2. Consider the following domain, D , and codomain, C .



- (a) give a relation that is one-to-one (ie injective) and not onto
- (b) give a relation that is onto (ie surjective) and not one-to-one
- (c) give a relation that is a one-to-one correspondence (ie bijective)

Logistics

- Codelet 1 is posted (due Friday)
- OH are R_s 10:30 - 1:30
- Notecards for in class problems
- Lab 1 Wed
- Codelet 1 use basic Python

Functions

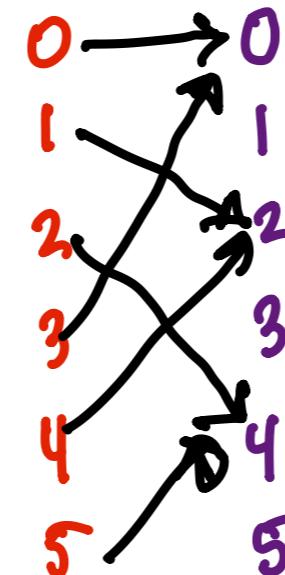
Let $f : \{0, 1, 2, 3, 4, 5\} \rightarrow \{0, 1, 2, 3, 4, 5\}$

$$f(x) := 2x \bmod 6$$

This function is

- A) one-to-one
- B) onto
- C) bijective
- D) none of the above

1



Let $g : \{0, 1, 2, \dots, 9\} \rightarrow \{0, 1, 2, 3, 4\}$

$$g(x) := \lfloor x/2 \rfloor \bmod 5$$

This function is

- A) one-to-one
- B) onto
- C) bijective
- D) none of the above

2

Let $h : \{0, 1, 2, 3, 4\} \rightarrow \{0, 1, 2, 3, 4\}$

$$h(x) := 2x \bmod 5$$

This function is

- A) one-to-one
- B) onto
- C) bijective
- D) none of the above

3

Cardinality Revisited

or, some infinities are built different

or, you can cram a shit ton, but not more, into infinity

Definition 1

The sets A and B have the same *cardinality* if and only if there is a one-to-one correspondence from A to B . When A and B have the same cardinality, we write $|A| = |B|$.

For infinite sets the definition of cardinality provides a relative measure of the sizes of two sets, rather than a measure of the size of one particular set. We can also define what it means for one set to have a smaller cardinality than another set.

Definition 2

If there is a one-to-one function from A to B , the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq |B|$. Moreover, when $|A| \leq |B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write $|A| < |B|$.

Countability

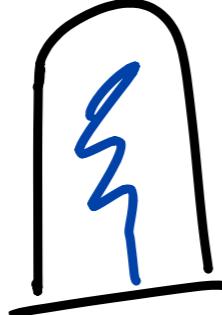
Definition 3

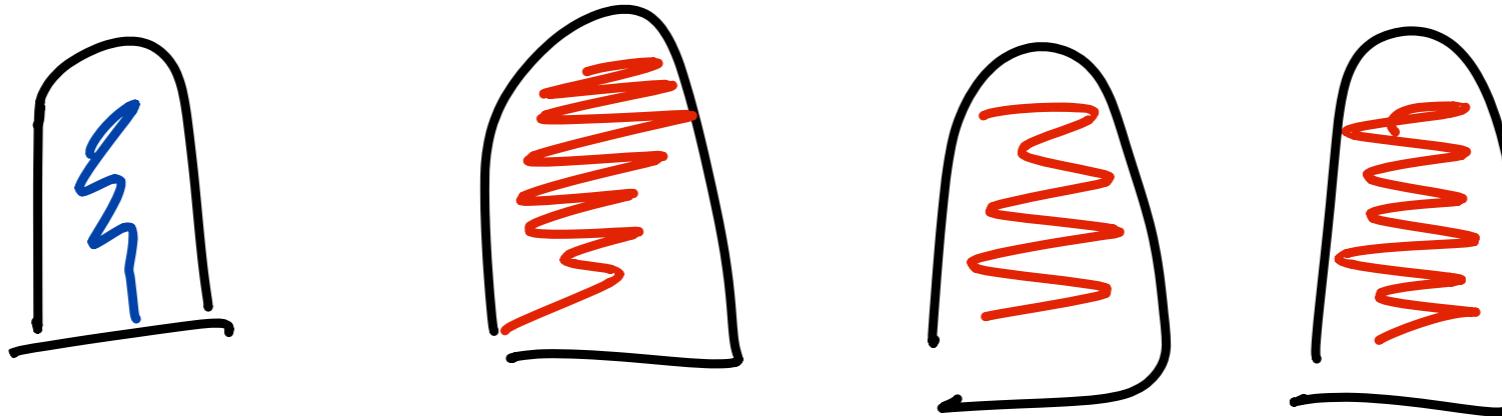
A set that is either finite or has the same cardinality as the set of positive integers is called *countable*. A set that is not countable is called *uncountable*. When an infinite set S is countable, we denote the cardinality of S by \aleph_0 (where \aleph is aleph, the first letter of the Hebrew alphabet). We write $|S| = \aleph_0$ and say that S has cardinality “aleph null.”

$$\aleph_0 = \{1, 2, 3, 4, \dots\}$$

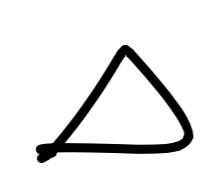
Finite Hotels

1

 Walk up



$$f(n) = n + 1$$

 all full

a person arrives

Can I fit them in the
motel?

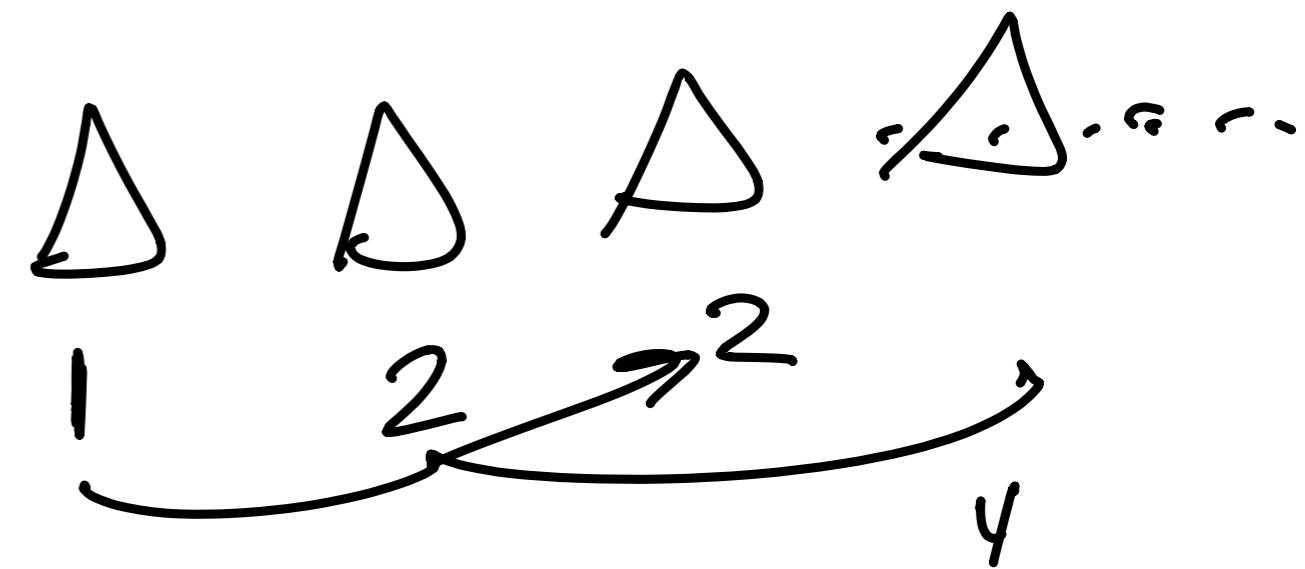
5 people?

how do we fit for more people

$$f(n) = n + \sqrt[5]{n}$$

$$00 = 00 + 5$$

$$f(n) = 2n$$



1, 2, ..., ..

n

$$00 = 00 + 00$$

positive numbers \mathbb{N}_+ = $\{1, 2, \dots\}$

Integers = $\{\dots, -2, -1, 0, 1, 2, \dots\}$

0 -1 1 -2 2 -3 3 - - - - -

1 2 3 4 - - - - - - - -

Infinite sets

rational numbers?

Q

$$\frac{1}{2}$$

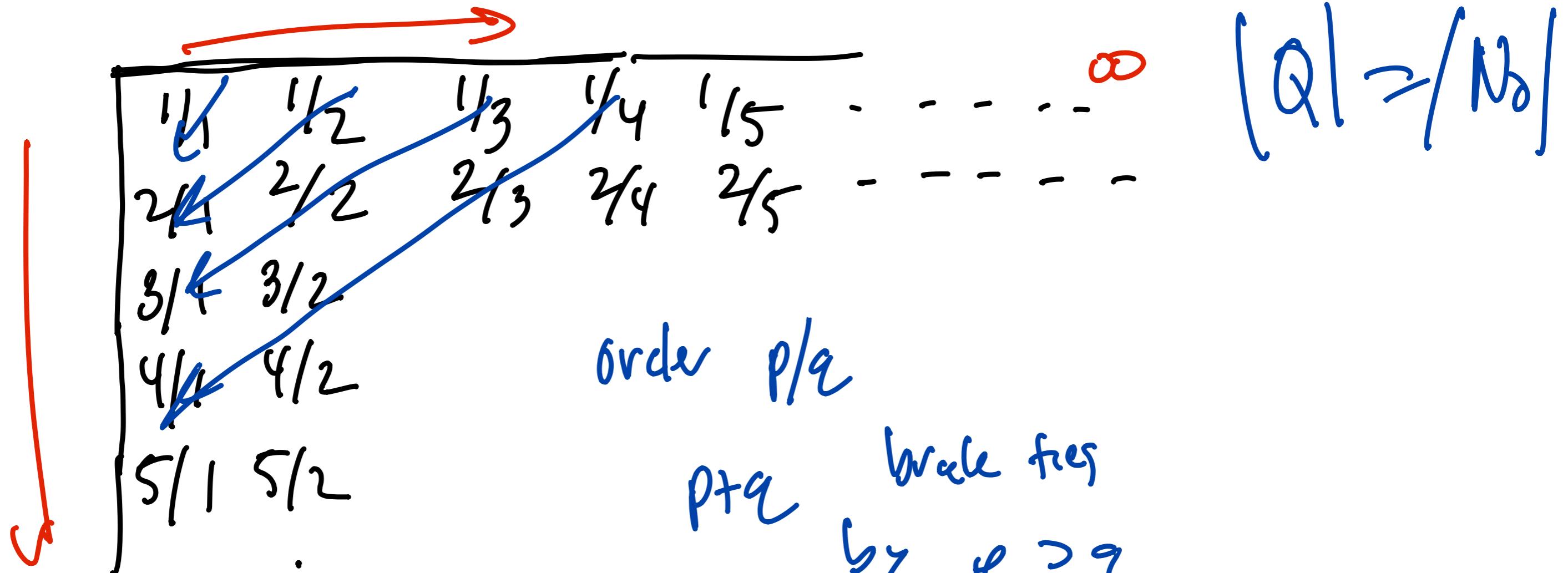
$$\frac{1}{3}$$

$$\frac{1}{16}$$

$$\frac{4}{3}$$

are the rational numbers
countable?

$$\frac{2}{20} \dots$$



$$\begin{aligned}
 2 &= 1/1 \\
 3 &= 1/2, 2/1 \\
 4 &= 1/3, 2/2, 3/1
 \end{aligned}$$

.

;

there exists sets that are not countable

$S = \{ \text{decimal expansions of only } 3s \text{ and } 4s \}$

$$x_1 = 0.343443 \dots \underline{\quad}$$

$$x_2 = 0.44434443 \dots \underline{\quad}$$

$$x_3 = 0.334344 \dots \underline{\quad}$$

$$x_4 = \dots \overset{\leftarrow}{\text{S}}$$

1. Assume a bijection $f: \mathbb{N}_0 \rightarrow S$

2. find an element of S that
is not in $f(n)$

3. f is not surjective

4. f is not a bijection

$S = \{$ decimal expansions of only $\sim \sim \sim$ $\}$

$$x_1 = 0.\textcircled{3}43443\cdots$$

$$x_S = 0.433\overline{4}$$

$$x_2 = 0.\textcircled{4}943443\cdots$$

$$x_S \not\in S$$

$$x_3 = 0.33\textcircled{9}344\cdots$$

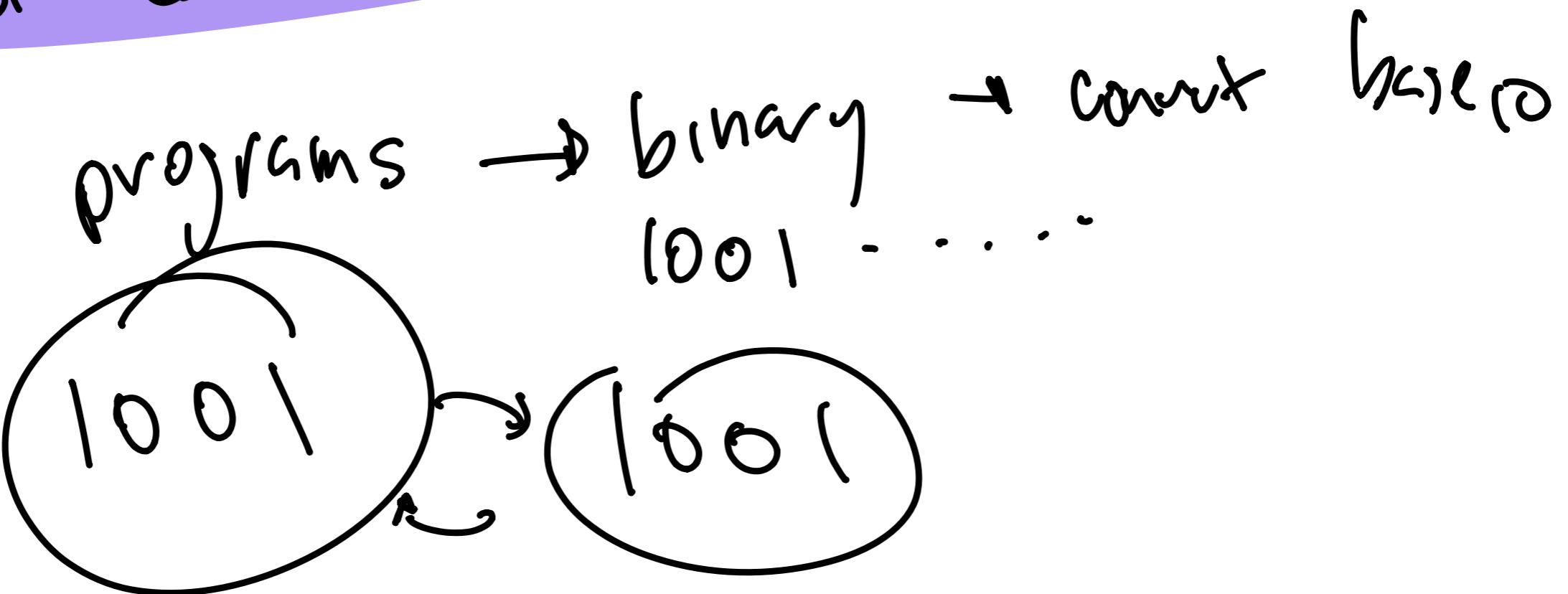
$$x_4 = \cdots$$

$$x_S = 0.333333\cdots$$

π is not countable

Your Turn

Demonstrate that the set of all computer programs is infinite and countable



CosC 290: Discrete Structures

Propositional Logic I

01/29/2024

Prof. Forrest

Propositional Logic Formulas

Which of these statements

is a proposition?

(a) $x+1 = 3$ \times

(b) $1+4 = 7$ \checkmark False

(c) Colgate is in Hamilton, NY. \top

(d) Answer this question. \times

Propositions are True or False

Atoms

p, q, r, s, \dots

$\neg p$

$p \wedge q$

Connectives

\wedge (and)

\vee (or)

\rightarrow (implies)

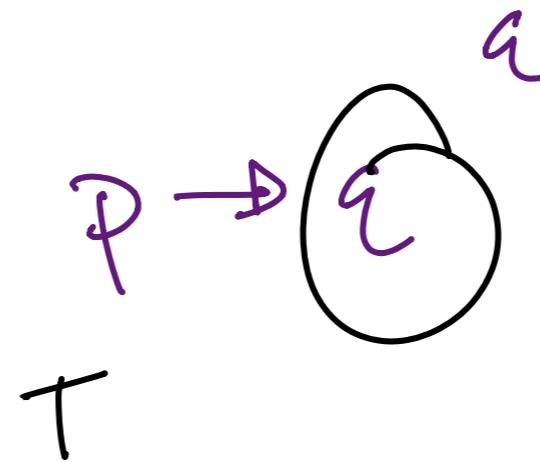
\oplus (xor)

Truth Tables

P	q	$P \wedge q$	$P \vee q$	$P \oplus q$
T	T	T	T	F
T	F	F	T	T
F	T	F	T	T
F	F	F	F	F

P	q	$P \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

if $\underbrace{it \text{ snows tomorrow}}_P$
 then $\underbrace{\text{class will be}}_q$ $\underbrace{\text{cancelled}}_a$



Give the truth table
for $(P \vee q) \rightarrow r$

if my car dies
or
it snows tomorrow
then class is cancelled

how do I show
this is a lie?

2^3

P	q	r	$p \vee q$	$(p \vee q) \rightarrow r$
T	T	T	T	T
T	T	F	T	F
T	F	T	T	T
T	F	F	T	F
F	T	T	T	T
F	T	F	T	F
F	F	T	F	T
F	F	F	F	F

Complete a NoteCard