
COSC 101 Homework 6: Fall 2024
❗ Tasks 1 and 2 must be completed with the partner assigned by your instructor and
are due Tuesday, October 22, 11:59pm EDT

❗ Task 3 must be completed individually and is due Friday, October 25, 11:59pm
EDT

Introduction

In this homework, you will practice your design and programming skills to create a
simplified version of the Wheel of Fortune Game. This assignment is designed to give
you practice with the following topics:

• Top Down Design
• Functions
• Boolean Values
• While Loops

❗❗ Important Tips

• Labs and homeworks build on each other. You should draw on the skills you used
in prior homeworks and labs.

• You are not allowed to use constructs/methods/statements, that we have not yet
covered in this course–which includes string methods, list assignment, list methods.

• Remember, computer science is a science. Always write code with a prediction in
mind. While you can sparingly code to try and see output, you should focus on
thinking through what you want your code to do, what you expect as a result, and
compare what your code actually does to your result.

• Before you type, trace the execution of the starter code already provided.
• Use extra steps if needed for your thought process, printing results to test your code.

Just remember to remove these extra prints once you know your code is correct.

Your assignment

Your assignment is to complete following steps:

1. Download the hw6.zip file and open it. You will see one python file (hw6_wof.py)
and two PDF files (wof_games_basic.pdf and wof_games_full.pdf) in the



unzipped folder. Do not change the name of the Python file.
2. Review the assignment overview and grading criteria below.
3. Complete tasks 1 and 2 with the partner assigned by your instructor and submit

these tasks by Tuesday, October 22, 10am EDT
4. Complete task 3 in hw6_wof.py individually and submit this task by Friday,

October 25, 11:59pm EDT.

Similar to homework 4, the tasks in this assignment build on one another. You need to
complete Task 1 before you can do Task 2, and you need to complete Task 2 before you
can do Task 3.

Notice that the starter .py file has a header with some information for you to fill in.
Please do so. Your feedback helps the instructors better understand your experiences
doing the homeworks and where we can provide better assistance.

Game overview

Wheel of Fortune is an American game show where contestants compete to guess a
mystery phrase and win money.

You will both design and implement a program for a simplified single-player version of
Wheel of Fortune. The overarching goal of the game is to solve the puzzle (that is, guess
the phrase) and win as many points as possible along the way.

At the beginning of every game:

• The player starts with 0 points and 5 tokens.

• A phrase is shown to the player with all letters hidden. Players can see spaces (if
applicable).

Below the phases of the game are sketched.

Game start

At the start of the game, a welcome message, the state of the game, and the phrase (with
letters hidden) is displayed.

Player’s turn

For each turn, the player can choose one of three options:

• Spin the wheel

• Guess the puzzle

• Quit

Spin the Wheel

https://en.wikipedia.org/wiki/Wheel_of_Fortune_(American_game_show)
https://en.wikipedia.org/wiki/Wheel_of_Fortune_(American_game_show)


If the player chooses to Spin the wheel, the wheel is spun. As depicted above, the wheel
has different states it can land on. We will simplify this wheel to just positive points (500,
1000, …) or BANKRUPT.

• If the wheel shows 'BANKRUPT', the players loses all of the points they’ve
accumulated so far and they lose one of their tokens.

• If the outcome is a positive point value, the user can enter a letter in the puzzle.

◦ If the letter is not in the puzzle, they lose one of their remaining tokens.

◦ If the letter is in the puzzle they win points equal to the spin value times the
number of times that letter appears in the puzzle.

Guess the puzzle

If the player chooses to Guess the puzzle, the player will be prompted to provide a
solution.

• If the guess is correct, the player wins the game.

• If the guess is incorrect, they lose one of their remaining tokens.

Quit

If the player chooses to Quit, the game ends with the player losing.

End of Game

At the end of the game, the player earns points equal to the points accumulated during the
game times the number of tokens they have remaining. If they lose, the correct phrase is
displayed along with a losing message.



Sample Games

Sample runs of the basic game can be found in wof_games_basic.pdf and of the fuller
game in wof_games_full.pdf.

Grading

When we are assessing your code, higher levels of achievement are demonstrated, in part,
by

• Starter code left unmodified
• All lines of output are present
• Lines of output have proper formatting, including spacing and blank lines
• Use spaces and blank lines in code for readability
• Variables are appropriately named and used
• Functions are appropriately named and definitions include type annotations and

docstrings
• Functions are used to capture patterns and minimize repeated code
• Functions are used to break down problems and employ abstraction
• Loops are appropriately used to abstract repeated patterns
• Code is clean (for example, remove code you commented out)
• Code is elegant (for example, limit excessive code, ask yourself, can I do this a

simpler way)

Task 1: Problem Solving (with a partner)

For this task you will not code. With more complicated programs, we need to breakdown
our thought process. First we will orient ourselves to game and its flow by focusing on
the basic game. Start by reviewing the sample basic game runs in
wof_games_basic.pdf.

For the following questions, you will write your answers by annotating the pdf copy of
the basic game runs called wof_games_basic.pdf. A printed copy can be found outside
of your instructor’s office.

1. Label the code output in each of the 3 basic games with the phases of the
game the output corresponds to. That is, is it the start of the game, end of the
game, or player turn.

2. For each player turn label the round number and summarize the important
action (what was done and what was updated or outputted).

3. What are the conditions that end the game? How does the player win? How
does the player lose?

4. In a player turn, how are the points calculated (provide an example
calculation)?

5. At the end of the game, how are the total points calculated (provide an
example calculation)?



Task 2: Program Design (with a partner)

For this task you will not code. For this task, we will think about top down program
design. You will produce a Design Doc that provides the outline of a solution for the
basic game. In building this design doc, consider the tips below. Additionally, ignore the
total score for now.

You can write your answers on paper and scan them or submit a photo of a whiteboard
with your answer. Regardless of which method you choose, you will submit a single PDF
file with your answer to Task 2.

1. Re-review the sample basic game runs you annotated for Task 1. Review the
provided functions and their docstrings in hw6_wof.py. Using these existing
functions and by designing functions of your own group the game output with
the relevant functions. Do not write functions. Rather, provide a function
definition with parameters and the output you expect (assume that the function
can do the computation you want).

2. Diagram your program showing how your functions (and the provided ones)
relate to one another (when does your function get called, what function is
called after, etc.).

Task 3: Implementation (individually)

❗❗Task 3 should be completed individually.

Now that we have oriented ourselves to the game and proposed a possible high-level
description of a solution, it’s time to implement our program. Note: Your actual solution
may differ from your proposal. That is to be expected. Do not modify your answer
to Task 2 based on your final solution to Task 3. Rather, you can copy and change
your Task 2 as needed in helping you think through Task 3. We will proceed in two
steps. First implementing the basic game flow and then filling in a fuller solution.

Sub-task A: Basic Game Flow

For sub-task A, you should use the provided functions and code you write to recreate the
basic game runs in wof_games_basic.pdf (that you annotated for Task 1 and that you
proposed a design for in Task 2). Begin by completing the display_board and
end_game functions.

Sub-task B: The Program

Now that you have the basic scaffold of your game, modify your code (Reminder: Do
not change the provided functions) to handle the full game. Review the sample runs in
wof_games_full.pdf. Note the changes. What new information did you learn about the
player choice part? What happens when the wheel lands on BANKRUPT?



Submission Instructions

Submit a single PDF with your answers for Task 1, a single PDF with your answers to
Task 2, and your Python file hw6_wof.py to the platform indicated in your class section.
Recall, that tasks 1 and 2 are due Tuesday Oct. 22 at 10AM and are completed with a
partner. Task 3 is due Friday Oct. 25 at 11:59PM and must be completed individually.


