
COSC 101, Exam #3 Practice

1. For each part (a, b, and c) indicate what the program prints.
(a) (2 points)

def bar(x: list) -> None:
y = x[:]
y.pop(1)
y.pop(4)
p r i n t(y)

aList = [23, 4, 'cat', 'lizards', 'adventure', False]
bar(aList)
p r i n t(aList)

Solution:

[23, 'cat', 'lizards', 'adventure']
[23, 4, 'cat', 'lizards', 'adventure', False]

1



COSC 101 Exam #3 Practice

(b) (3 points)
def foo(freq: dict) -> None:

a = freq
p r i n t(a)
a['hello'] += 1
a['bye'] = 1
p r i n t(a)

freq = {'hello': 3, 'cats': 100}
foo(freq)
p r i n t(freq)

Solution:

{'hello': 3, 'cats': 100}
{'hello': 4, 'cats': 100, 'bye': 1}
{'hello': 4, 'cats': 100, 'bye': 1}

(c) (3 points)
def negate(words: list) -> None:

p r i n t(words)
for i in r a n g e(len(words)):

words[i] = 'un'+words[i]
p r i n t(words)

a = ["do", "apply"]
negate(a)
p r i n t(a)

Solution:

['do', 'apply']
['undo', 'unapply']
['undo', 'unapply']

2



COSC 101 Exam #3 Practice

2. For each part (a, b, and c) indicate what the program prints.
(a) (3 points)

def wacky(aList: list) -> None:
bList = aList
p r i n t(bList)
bList.append('tigers')
bList.append('oh my')
p r i n t(bList)

animals = ['cats', 'lions']
wacky(animals)
p r i n t(animals)

Solution:

['cats', 'lions']
['cats', 'lions', 'tigers', 'oh my']
['cats', 'lions', 'tigers', 'oh my']

3



COSC 101 Exam #3 Practice

(b) (3 points)
def plural(x: list) -> None:

p r i n t(x)
for w in x:

w = w + 's'
p r i n t(x)

a = ["pear", "apple"]
plural(a)
p r i n t(a)

Solution:

['pear', 'apple']
['pear', 'apple']
['pear', 'apple']

4



COSC 101 Exam #3 Practice

(c) (2 points)
def removey(x: list) -> None:

y = x[:]
del y[0]
del y[3]
p r i n t(y)

aList = ['colgate', 13, 8, 'raiders', 2, 'fig']
removey(aList)
p r i n t(aList)

Solution:

[13, 8, 'raiders', 'fig']
['colgate', 13, 8, 'raiders', 2, 'fig']

5



COSC 101 Exam #3 Practice

3. This is a two-part question. Part (a) is a helper function for Part (b). Part (b) can be
completed even if you have not correctly implemented Part (a). The overall problem
is about course registration.

(a) (6 points) Write a function called get_valid_course that prompts the user to
enter the number of a course theywant to take and returns the string representing
the course. The function should only return valid course numbers: course num-
bers with four-character department codes followed by a space and then a three
digit number. For example, 'COSC 102' is valid, but'Computer Science 2'
is not. When a user enters an invalid course number, the function should display
an error message and then reprompt them. Hint: Look at the string methods at
the end of the exam.

Solution:

def get_valid_course() -> str:
isValid = False
while not isValid:

course = input('What course do you want? ')
if (len(course) == 8 and

course[:4].isalpha() and
course[4] == ' ' and
course[5:].isdigit()):
isValid = True

else:
print('You did not enter a valid course.')

return course

6



COSC 101 Exam #3 Practice

(b) (6 points) Write a function called register which takes a dictionary of course
enrollments as a parameter. The course enrollment dictionary has course num-
bers as keys and values are the number of students enrolled in the course. The
user will be prompted to enter the course number for one course they wish to
enroll in. (If they enter an invalid course number they will be re-prompted until
they provide a valid course number.) The program will return the course the
user was able to enroll in or 'FAILED' if registration was not successful. Addi-
tionally, your function should print a message telling the user the course is not
offered if the requested course is not offered (i.e., missing from the course en-
rollment data). Students can only enroll in a course if there is at least one seat
available. Courses allow a maximum of 24 students to enroll. Your function
should update the course enrollment dictionary to reflect the updated numbers
of students in each course.
For example, if the course enrollment dictionary is originally
{'COSC 101':22, 'COSC 102':15, 'COSC 201':24}

and the user indicates they would like to enroll in 'COSC 101', the function
would return 'COSC 101' and the dictionary is now
{'COSC 101':23, 'COSC 102':15, 'COSC 201':24}

You are required to use the get_course function from part (a) and can assume
the function works as described (regardless of whether your answer is correct or
not).

Solution:

def register(enroll: dict) -> str:
course = get_valid_course()
if course not in enroll:

print('Course not offered this semester')
return 'FAILED'

if enroll[course] > 23:
return 'FAILED'

enroll[course] += 1
return course

7



COSC 101 Exam #3 Practice

4. You are given a dictionary representing the top goal scorers in the history of the FIFA
World Cup. Each player is identified by their name (a string), and the corresponding
number of goals they scored is represented by an integer value. Example dictionary:
wc_scorers = {

"Marta": 17,
"Miroslav Klose": 16,
"Birgit Prinz": 14,
"Ronaldo": 15,
"Lionel Messi": 13

}

This question has two parts. The second part appears on the next page.

(a) (5 points) Write a Python function called find_top_scorer that takes the dic-
tionary as input and returns the name of the player with themost goals inWorld
Cup history.

Solution:

def find_top_scorer(wc_scorers: dict) -> str:
top_scorer = None
max_goals = 0
for player, goals in wc_scorers.items():

if goals > max_goals:
top_scorer = player
max_goals = goals

return top_scorer

8



COSC 101 Exam #3 Practice

(b) (3 points) Using the function find_top_scorer from the previous part, write
another Python function calledis_legend that takes the dictionary of goal scor-
ers. This function should return True if the top scorer has scored 15 or more
goals in the World Cup, and False otherwise.
Example Usage 1:
wc_scorers_2 = {

"Birgit Prinz": 14,
"Lionel Messi": 13,
"Just Fontaine": 13,
"Kylian Mbappe": 12

}

print(is_legend(wc_scorers_2)) # Output: False

Example Usage 2:
wc_scorers = {

"Marta": 17,
"Miroslav Klose": 16,
"Birgit Prinz": 14,
"Ronaldo": 15,
"Lionel Messi": 13

}

print(is_legend(wc_scorers)) # Output: True

Note: You MUST use find_top_scorer in is_legend.

Solution:

def is_legend(wc_scorers: dict) -> bool:
top_scorer = find_top_scorer(wc_scorers)
if wc_scorers[top_scorer] >= 15:

return True
else:

return False

9


